# 巻末 資料

# 目次

| 1. | 港灣   | 変整備! | こおり | けるも  | 呆全  | • 再 <sub>2</sub> | 生技 | 術ℓ | り事 | 例. | <br> | <br> | <br> | <br> | <br> | <br> | . 1 |
|----|------|------|-----|------|-----|------------------|----|----|----|----|------|------|------|------|------|------|-----|
|    | 1-1. | 干潟   |     |      |     |                  |    |    |    |    | <br> | <br> | <br> | <br> | <br> | <br> | . 1 |
|    | 1-2. | 藻場   |     |      |     |                  |    |    |    |    | <br> | <br> | <br> | <br> | <br> | <br> | . 6 |
|    | 1-3. | サン   | ゴ類. |      |     |                  |    |    |    |    | <br> | <br> | <br> | <br> | <br> | <br> | 25  |
|    | 1-4. | カサ   | ノリ  | • ホ) | ソエフ | ガサ               |    |    |    |    | <br> | <br> | <br> | <br> | <br> | <br> | 51  |
| 2. | 生物   | かの生態 | 態的特 | 寺性に  | こ関っ | するタ              | 知見 |    |    |    | <br> | <br> | <br> | <br> | <br> | <br> | 56  |

# 1. 港湾整備における保全・再生技術の事例

4-1. に記した環境保全措置に適用できる具体的な技術として、干潟、藻場、サンゴ類、カサノリ・ホソエガサの保全・再生に関する国内の既存の事例や研究事例を中心に収集・整理した。

## 1-1. 干潟

干潟の保全・再生に関する既存事例の一覧表を表 1-1に示す。

生物共生型構造物については、県外でいくつか事例が報告されている。軟体類、甲殻類、 多毛類、海藻類、魚類、鳥類など、多様な生物の生息が確認されていることから、生物多 様性の向上に寄与する可能性が示されている。

人工干潟については、県内外で事例が報告されている。とくに県内の事例として、泡瀬 干潟においてクビレミドロやトカゲハゼの保全を目的に、干潟の形状、底質、水深などの 設計条件が検討されている。

# 表 1-1 干潟の保全・再生に関する既存事例

| No.** | 区分           | 実施場所等 | 事例名                           | 時期          | 対象                             | 仕様·方法等                                             | 出典     | 掲載ページ |
|-------|--------------|-------|-------------------------------|-------------|--------------------------------|----------------------------------------------------|--------|-------|
| 1     | 生物共生型<br>構造物 | 横浜港   | 人工干潟を用いた生物共生型護岸(潮彩の渚)         | 平成20年       | 軟体類、甲殻類、<br>多毛類、海藻類、<br>魚類、鳥類等 | 既設の護岸前面に階段状の人工干潟を造成                                | [1]    | p.3   |
| 2     |              | 堺泉北港  | 干潟型の生物共生型護岸                   | 平成21年       |                                | 潮間帯付近に海砂を投入し、水深を変化させた3段の階段状の人工干潟部を造成               | [2]    | p.4   |
| 3     |              | 中城湾港  | クビレミドロの生育に適した人工干潟の<br>設計条件の検討 | 平成17年~平成20年 | 17P L S S D                    | 現地調査、実験、既存資料からクビレミドロの生育<br>環境を把握し、人工干潟の設計条件を検討     | [3]    | p.5   |
| 4     | 中城湾港         |       | トカゲハゼの生息に適した人工干潟の<br>設計条件の検討  | 平成16年~平成19年 |                                | 現地調査、実験、既存資料からトカゲハゼの生息環<br>境を把握し、人工干潟の設計条件を検討      | [3]    | -     |
| 5     |              | 中城湾港  | 簡易な底質改良工(人力による掘り起こし)          | 平成18年~      | トカゲハゼ                          | 人力で底質を掘削・混合して泥分を表層に移動させ<br>る底質改良によりトカゲハゼの生息環境を維持   | [3]    | -     |
| 6     | 英虞湾<br>人工干潟  |       | 人工干潟                          | 平成16年~平成17年 | 多毛類、腹足類、<br>二枚貝類等              | 浚渫ヘドロの豊富な有機物を貧栄養な干潟生態系への栄養供給材料として利用する干潟造成技術の<br>開発 | [4]    | -     |
| 7     |              | 尾道糸崎港 | 人工干潟                          | 昭和59年~      | 甲殻類、二枚貝<br>類等                  | 航路整備における浚渫土砂を用いた人工干潟造成                             | [5][6] | -     |
| 8     |              | 徳山下松港 | 大島干潟                          | 平成17年~      | 二枚貝類                           | アサリの生息場としての機能を持つ干潟の造成                              | [7][8] | -     |
| 9     |              | 熊本港   | 熊本港親水公園(野鳥の池)                 | 平成14年       | 多毛類、甲殼類、<br>魚類等                | 港の一角に浚渫土砂を用いた人工干潟を造成                               | [9]    | -     |
| 10    |              | 熊本港   | なぎさ線の回復による干潟改善策               | 平成17年~平成18年 |                                | 堤防の前面に干潟・なぎさ線を復元し、連続した地<br>形と生態系の回復・保持             | [9]    | -     |

※下線で示された事例は本マニュアル適用範囲の周辺海域における導入実績等を踏まえて選定し、次ページ以降に事例の概略を掲載した。

- [1] 国土交通省関東地方整備局横浜港湾空港技術調査事務所: "潮彩の渚", 国土交通省関東地方整備局横浜港湾空港技術調査事務所HP, 令和2年(2020年), https://www.pa.ktr.mlit.go.jp/yokohamagicho/nagisa/indp.html(令和7年3月28日に利用). を加工して作成
  [2] 近畿地方整備局: "生き物と触れあえ市民に愛される堺泉北井野大生型護岸での取り組みについて", 国土交通省 近畿地方整備局 研究発表会HP, 平成30年(2018年), https://www.kkr.mlit.go.jp/plan/happyou/thesises/2018/03.html(令和7年3月28日に利用). を加工して作成
- [3] 内閣府沖縄総合事務局, 沖縄県土木建築部, 沖縄市東部海浜開発局: "令和4年度第1回中城湾港泡瀬地区環境保全・創造検討委員会 行動計画のとりまとめ(案)(資料-2)", 内閣府沖縄総合事務局那覇港湾・空港整備事務所中城湾港出張所HP, 令和4年(2022年), https://www.dc.ogb.go.jp/nakagusukuwankou/detail.jsp@id=154&menuid=148&funcid=1.html (令和7年3月28日に利用). を加工して作成
- [4] 国分秀樹, 奥村宏征, 高山百合子, 湯浅城之: 英虞湾の浚渫へドロを用いた人工干潟とアマモ場における底質と底生生物の変遷, 海岸工学論文集, Vol.54, pp.1251 1255, 2007.
- [5] 国土交通省中国地方整備局港湾空港部: "広島港湾・空港整備事務所におけるSDGsの達成に資する取組について",中国地方整備局における港湾に関するSDGs達成に資する取組の紹介, 国土交通省中国地方整備局 港湾空港部HP, https://www.pa.cgr.mlit.go.jp/minato-seibi/sdgs.html(令和7年4月18日に利用).
- [6] 国土交通省中国地方整備局広島港湾·空港整備事務所:"競争力のある港づくり干潟整備", 国土交通省中国地方整備局広島港湾·空港整備事務所HP,
- https://www.pa.cgr.mlit.go.jp/hiroshima/kyosoryoku/higataseibi.html(令和7年4年18日に利用).
  [7] 国土交通省中国地方整備局港湾空港部: "事業の取り組み状況(主要事例①: 徳山下松港大島干潟)", 瀬戸内海の環境データベースHP,
- https://www.pa.cgr.mlit.go,jp/suishitu/seto/rest\_008.html(令和7年4月20日に利用).

  [8] 田中順, 阿部賢, 菅高徳, 小林健二: "アサリの住む人工干潟をめざして〜大島人工干潟の維持管理手法の検討〜", 平成21年度国土交通省国土技術研究会:自由課題(一般部門)平成21年度国土交通省国土技術研究会HP, 平成21年(2009年), https://www.mlit.go,jp/chosahokoku/h21giken/program/kadai/ippan.html(令和7年4月18日に利用). を加工して [9] 環境省: "有明海・八代海等総合調査評価委員会報告・まとめ集HP, 平成29年(2017年),
- https://www.env.go.jp/council/20ari-yatsu/report20170331/index.html(令和7年4月18日に利用).

| 事例名  | No.1 人工干潟を用いた生物共生型護岸(潮彩の渚)          |
|------|-------------------------------------|
| 目的   | 湾岸施設と海洋生物の共存可能な構造の実証                |
| 実施箇所 | 横浜港                                 |
| 実施時期 |                                     |
| 技術概要 | 【背景】                                |
|      | ・老朽化した桟橋を補修、補強しつつ、生物生息場や市民利用が可能な海辺の |
|      | 創出を目標として竣工した。                       |
|      | 【結果等】                               |
|      | ・棚式の構造で砂浜と礫浜を作ることで、船舶の航行域を狭めず、多様な生物 |
|      | の着生させる試みを両立可能にしている。                 |
|      | ・耐震性を向上させるだけでなく、多様な生物の生息場や地域市民にとっての |
|      | 環境学習の場となっている。                       |
|      |                                     |
|      |                                     |
|      | 奥行き: 約50m H.W.L. +2m                |
|      | 機場 干潟① +1.0m 機場                     |
|      | +1.0m +1.0m +3.0m                   |
|      | 機場<br>+0.5m 干潟② +0.5m +0.5m 幅:20m   |
|      | +0.5m == 干潟(2)                      |
|      | +0.00                               |
|      | 機場 ±0.0m                            |
|      | 図 干潟平面イメージ図(左)と干潟断面イメージ図(右)         |
|      |                                     |
|      |                                     |
|      | <b>アサリ</b> カミクラゲ ヒザラガイ クロアナゴ        |
|      |                                     |
|      | 2019. 7. 18/5                       |
|      | 渚で撮影!                               |
|      |                                     |
|      |                                     |
|      | イシワケ                                |
|      | マテガイ・イソギンチャク・カルガモ スナガニ              |
|      | 図 生物共生型護岸で確認された生物たち                 |
|      |                                     |
|      |                                     |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[1]国土交通省関東地方整備局横浜港湾空港技術調査事務所: "潮彩の渚", 国土交通省関東地方整備局横浜 港湾空港技術調査事務所 HP, 令和 2 年(2020 年),

https://www.pa.ktr.mlit.go.jp/yokohamagicho/nagisa/index.html(令和7年3月28日に利用).

| <ul> <li>海砂を投入し、水深を変化させた階段状の干潟型護岸を設置した。         【結果等】         ・平成 22 年以降のモニタリングにより、様々な生物の加入が認められ、特に重要種であるニホンウナギやアユなどの幼稚魚の一時的な生息機能が見られた。         ・市民に対しての多様な海岸環境の観察の場を提供している。         「本数数件         「大数数件         「大数数件         「大数数件         「大数数件         「大数数数分、全身         「大数数数分、全身         「大数数数分、全身         「大数数数分、全身         「大数数数分、全身         「大数数数分、全身         「大数数数数分、全身         「大数数数数分、全身         「大数数数分、全身         「大数数数分、全身         「大数数数分、全身         「大数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 実施箇所 堺泉北港<br>実施時期 平成 21 年<br>技術概要 【背景】<br>・海砂を投入し、水深を変化させた階段状の干潟型護岸を設置した。<br>【結果等】<br>・平成 22 年以降のモニタリングにより、様々な生物の加入が認められ、特に<br>重要種であるニホンウナギやアユなどの幼稚魚の一時的な生息機能が見られ<br>た。<br>・市民に対しての多様な海岸環境の観察の場を提供している。<br>「一番型選集イメージ図と実際の様子<br>「選問を表現など表現を含まる。」 「「「「「「「「「「「」」」 「「」」 「「」」 「「」」 「「」」 「                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 事例名  | No. 2 干潟型の生物共生型護岸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 実施時期 平成 21 年<br>技術概要<br>【背景】<br>・海砂を投入し、水深を変化させた階段状の干潟型護岸を設置した。<br>【結果等】<br>・平成 22 年以降のモニタリングにより、様々な生物の加入が認められ、特に重要種であるニホンウナギやアユなどの幼稚魚の一時的な生息機能が見られた。<br>・市民に対しての多様な海岸環境の観察の場を提供している。<br>・市民に対しての多様な海岸環境の観察の場を提供している。<br>・市民に対しての多様な海岸環境の観察の場を提供している。<br>・市民に対しているを考えられる<br>図 干潟型護岸イメージ図と実際の様子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 目的   | 生物の生息環境の形成                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 技術概要 「背景」 ・海砂を投入し、水深を変化させた階段状の干潟型護岸を設置した。 「結果等」 ・平成 22 年以降のモニタリングにより、様々な生物の加入が認められ、特に重要種であるニホンウナギやアユなどの幼稚魚の一時的な生息機能が見られた。 ・市民に対しての多様な海岸環境の観察の場を提供している。 ・市民に対しての多様な海岸環境の観察の場を提供している。 ・市民に対しての多様な海岸環境の観察の場を提供している。 ・市民に対しての多様な海岸環境の観察の場を提供している。 ・市民に対しての多様な海岸環境の観察の場を提供している。 ・市民に対しての多様な海岸環境の観察の場を提供している。 ・市民の場合と対象に対していると考えられる。 ・ 市民の場合と考えられる ・ 「おります」 ・ 「よります」 ・ | 実施箇所 | 堺泉北港                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>海砂を投入し、水深を変化させた階段状の干潟型護岸を設置した。         【結果等】         ・平成 22 年以降のモニタリングにより、様々な生物の加入が認められ、特に重要種であるニホンウナギやアユなどの幼稚魚の一時的な生息機能が見られた。         ・市民に対しての多様な海岸環境の観察の場を提供している。         ・市民に対しての多様な海岸環境の観察の場を提供している。         「日本の職業の場を提供している。         「日本の職業の場を提供している。         「日本の職業の場を提供している。         「日本の職業の場を提供している。         「日本の職業の観客の場を提供している。         「日本の職業の場を提供している。         「日本の職業の場を提供している。         「日本の職業の観客の場を提供している。         「日本の職業の観客の場を提供している。         「日本の職業の場合と実際の様子」         「日本の職業の場合と表表の情報を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 実施時期 | 平成 21 年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>「結果等】</li> <li>・ 平成 22 年以降のモニタリングにより、様々な生物の加入が認められ、特に重要種であるニホンウナギやアユなどの幼稚魚の一時的な生息機能が見られた。</li> <li>・ 市民に対しての多様な海岸環境の観察の場を提供している。</li> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 技術概要 | 【背景】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>・ 平成 22 年以降のモニタリングにより、様々な生物の加入が認められ、特に重要種であるニホンウナギやアユなどの幼稚魚の一時的な生息機能が見られた。</li> <li>・ 市民に対しての多様な海岸環境の観察の場を提供している。</li> <li>・ 市民に対しての多様な海岸環境の観察の場を提供している。</li> <li>・ 下展型課件</li> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | ・海砂を投入し、水深を変化させた階段状の干潟型護岸を設置した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 重要種であるニホンウナギやアコなどの幼稚魚の一時的な生息機能が見られた。 ・ 市民に対しての多様な海岸環境の観察の場を提供している。  「                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 【結果等】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>市民に対しての多様な海岸環境の観察の場を提供している。</li> <li>「中国型機・イメーン図</li> <li>「東京3 階段状の干渉</li> <li>「東京4 日本の東京4 日本の</li></ul>                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ・市民に対しての多様な海岸環境の観察の場を提供している。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table   Ta   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 図 干湯型護岸イメージ図   写真-3 階段状の干渇   図 下湯型護岸イメージ図と実際の様子   選集を一時的な生態域として                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | ・市民に対しての多様な海岸環境の観察の場を提供している。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 写真-3 階段状の干渉   写真-3 階段状の干渉   写真-3 階段状の干渉   図 干湯型護岸イメージ図と実際の様子   返場を一時的な生態域として   利用していると考えられる   日本   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 干渴型競岸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 写真-2 干傷の様子    写真-2 干傷の様子   写真-2 干傷の様子   「                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | <b>東庭時本位</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 写真-2 干遇の様子    写真-2 干遇の様子   写真-2 干遇の様子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | <b>干海岭水</b> 鱼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 写真-2 干傷の様子    写真-2 干傷の様子   写真-2 干傷の様子   「                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 写真-3 階段状の干渇  図 干潟型護岸イメージ図と実際の様子  浅場を一時的な生息域として 利用していると考えられる  D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 図-1 干潟型護岸イメージ図                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 写真-3 階段状の干渇  図 干潟型護岸イメージ図と実際の様子  浅場を一時的な生息域として 利用していると考えられる  D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 写真-3 階段状の干渇  図 干潟型護岸イメージ図と実際の様子  浅場を一時的な生息域として 利用していると考えられる  D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 写真-3 階段状の干渇  図 干潟型護岸イメージ図と実際の様子  浅場を一時的な生息域として 利用していると考えられる  D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 写真-3 階段状の干潟 図 干潟型護岸イメージ図と実際の様子    浅場を一時的な生息域として                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 写真-3 階段状の干潟 図 干潟型護岸イメージ図と実際の様子    浅場を一時的な生息域として                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 図 干潟型護岸イメージ図と実際の様子    浅場を一時的な生息域として   利用していると考えられる   距離(m)   20   25   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 写真-2 干潟の様子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 図 干潟型護岸イメージ図と実際の様子    浅塩を一時的な生息域として   利用していると考えられる   距離(m)   20   25   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 図 干潟型護岸イメージ図と実際の様子    浅塩を一時的な生息域として   利用していると考えられる   距離(m)   20   25   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 図 干潟型護岸イメージ図と実際の様子    浅塩を一時的な生息域として   利用していると考えられる   距離(m)   20   25   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 図 干潟型護岸イメージ図と実際の様子    浅塩を一時的な生息域として   利用していると考えられる   距離(m)   20   25   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 浅場を一時的な生息域として   利用していると考えられる   距離(m)   0   5   10   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   15   20   25   30   25   25   25   25   25   25   25   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 写真-3 階段状の干潟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 満場を一時的な生息域として<br>利用していると考えられる   距離(m)   20   25   30   30   30   30   30   30   30   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | <br>  図 干潟型護岸イメージ図と実際の様子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ### ### ### ### #####################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 コウロエンカワヒバリガイ・コウロエンカワヒバリガイ・ 付着性で、干出や低塩分に 対性のある種類が優占 対性のある種類が優占 対性のある種類が優占 できなどの対権魚を採集 プラナガゴカイ、ヤマトスピオ 少し深い所に イトグサ属が マウレイボヤが多く付着 などが多く生意 ヤマトシジミも生息                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 利用していると考えられる 距離 (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2 などの幼稚魚を採集 ヨーロッパフジッボが多く付着 耐性のある種類が優占                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| で 1 アシナガゴカイ、ヤマトスピオ、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (E) -2 ドロクダムシ属、ドロソコエピ属 オトクサ高が ユウレイボヤが多く付着 などが多く生意 ヤマトシジミも生息                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Caca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | で 1 アンナカコカイ、ヤマトスヒオ、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | The state of the s |
| 十湯の登備により、海底の表面                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 干潟の整備により、海底の表面 夏季に下層で貧酸素の影響が                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -8 - や底質に潜って生活する種類が<br>優占 <b>強く、死滅すると考えられる</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 假占                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -10 <u>干潟</u> 搶石(傾斜)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 図 工泊刑議農の先続仕自保和                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 図 干潟型護岸の生物生息状況                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[2]近畿地方整備局: "生き物と触れあえ市民に愛される堺泉北港生物共生型護岸での取り組みについて", 国土交通省 近畿地方整備局 研究発表会 IIP, 平成 30 年(2018 年),

https://www.kkr.mlit.go.jp/plan/happyou/thesises/2018/03.html (令和7年3月28日に利用).

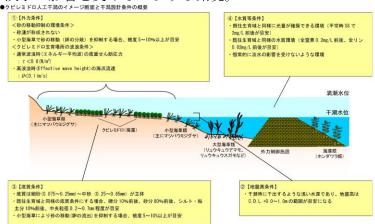
| 事例名  | No.3 クビレミドロの生育に適した人工干潟の設計条件の検討 |
|------|--------------------------------|
| 目的   | クビレミドロ生育圏の保全                   |
| 実施箇所 | 中城湾港(泡瀬地区)                     |
| 実施時期 | 平成 17 年~平成 20 年                |
| 技術概要 | 【省基】                           |

- ・中城湾港(泡瀬地区)における埋立計画区域内に分布しているクビレミドロ を保全するため、クビレミドロの生育に適した人工干潟について検討された。 【結果等】
- ・人工干潟を創出するため、設計条件として外力、地盤高、底質、水質等の観 点から検討され、それぞれ以下の通り条件がとりまとめられた。なお、令和 7年現在、実際に人工干潟を創出するまでには至っていない。

## <外力条件>

- ・砂の移動抑制の環境条件として、砂れんが形成されない程度。
- ・小型海草で砂の移動(卵の分散)を抑制する場合、被度5~10%以上が目安。
- ・クビレミドロ生育場所の波浪条件として、通常波浪時(エネルギー平均波) の底面せん断応力は  $\tau < 0.8 (N/m^2)$ 、高波浪時 (Effective wave height) の 海浜流速は U < 0.1 (m/s)。

### <地盤高条件>


・C.D.L+0.0~1.0mの範囲が目安(干潮時に干出するような浅い水深)。

### <底質条件>

- ・細砂 (0.075~0.25mm) ~中砂 (0.25~0.85mm) が主体。
- ・既往生育域と同様の底質条件の場合、礫分 10%前後、砂分 80%前後、シルト・ 粘土分 10%前後、中央粒径 0.2~0.7mm 程度。

### <水質等条件>

- ・平常時 SS で 2mg/L 前後、全窒素 0. 2mg/L 前後、全リン 0. 02mg/L 前後。
- ・ 恒常的に淡水の影響を受けないような環境。



クビレミドロ人工干潟のイメージ断面と干潟設計条件の概要

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[3]内閣府沖縄総合事務局,沖縄県土木建築部,沖縄市東部海浜開発局:"令和4年度第1回中城湾港泡瀬地 区環境保全・創造検討委員会 行動計画のとりまとめ(案)(資料-2)", 内閣府沖縄総合事務局那覇港湾・空 港整備事務所中城湾港出張所 HP, 令和 4 年(2022 年),

https://www.dc.ogb.go.jp/nakagusukuwankou/detail.jsp@id=154&menuid=148&funcid=1.html(令和7 年5月12日に利用).

## 1-2. 藻場

藻場の保全・再生に関する既存事例の一覧表を表 1-2 に示す。

移植については、海草類を対象とした事例として県外でのアマモ移植事例が多数報告されている。県内ではリュウキュウスガモ等の熱帯性海草類を対象とした事例が報告されている。移植に際して、浅海域の選定や底質の安定化に留意する必要があり、その手法として低天端堤の設置が試みられている。海藻類については、岩礁域に適切な基質があれば自然に付着することから、移植よりも環境改善や着生促進、食害防止といった観点での事例が多い。

生物共生型構造物については、海藻類を対象とした事例がほとんどで、とくに大型種を対象とした事例が県外において多く報告されている。県内では、県外の既存事例の対象種の分布が限られており、保全・再生の実績は乏しい。浦添ふ頭地区に出現する海藻類は小型種が多く、ホンダワラ類やオキナワモズクは低密度にとどまる。

陸上栽培については、熱帯性海草類の種苗生産技術が開発されており、専用施設が必要となるものの、親株の採取を最小限に抑えられることや、移植時期の調整が可能であることが利点とされる。

# 表 1-2 藻場の保全・再生に関する既存事例

| No.**     |              | 実施場所等                   | 事例名                          | 時期            | 対象                                    | 仕様・方法等                                                   | 出典       | 掲載ページ |
|-----------|--------------|-------------------------|------------------------------|---------------|---------------------------------------|----------------------------------------------------------|----------|-------|
| 2         |              | 那覇空港 クビレミドロの移植          |                              | 平成26年         | クビレミドロ                                | クビレミドロが繁茂した底泥ごと移植                                        | [10]     | -     |
|           |              |                         | 海草類の移植:栄養株移植(手植え移植)          | 平成14年~平成22年   | リュウキュウスガモ等                            | 手植え移植                                                    | [3]      | p.8   |
| 3         |              | 中城漆洪                    | 海草藻場の生育場の保全・創出               | 平成13年~14年     | リュウキュウスガモ、リュウキュウアマモ、<br>ベニアマモ、ボウバアマモ他 | 機械化移植工法                                                  | [11]     | -     |
| 4         |              | 中城湾港                    | 海草藻場の生育場の保全・創出               | 平成17年度~平成19年度 | 主にリュウキュウスガモ、リュウキュウア<br>マモ             | 袋型根固工により低天端堤を設置し、その<br>背後に移植した海草が生育しやすいよう、<br>盛砂を実施      | [3]      | p.9   |
| 5         |              | 糸満市南浜地先                 | 海草類の移植                       | 平成9年          | ベニアマモ、ボウバアマモ、リュウキュウ<br>スガモ            | 手植え移植                                                    | [12]     | -     |
| 6         | 移植           | 石垣市新川地先                 | 海草類の移植                       | 平成8年          | リュウキュウアマモ                             | 手植え移植                                                    | [12]     | -     |
| 2         |              | 英虞湾                     | 海草類の移植(アマモ移植)                | 平成16年度        | アマモ                                   | 播種・株植を行わないマットを用いたアマモ<br>移植工法                             | [13]     | p.10  |
| <u>8</u>  |              | 阪南港                     | 垂下式のアマモ栽培試験                  | 令和元年度~令和3年度   | アマモ                                   | 垂下式アマモ場造成                                                | [14]     | p.11  |
| 9         |              | 広島市宇品海岸地先               | 海草類の移植                       | 平成21年度~平成23年度 | アマモ                                   | 石炭灰造粒物によるアマモの定着、増殖特性                                     | [15]     | -     |
| 10        |              | 鳴門市櫛木浜地先、<br>周防大島逗子ヶ浜地先 | 海草類の移植                       | 平成10年度~平成14年度 | アマモ                                   | 鋼製マットを使用したアマモ場造成工法                                       | [16]     | -     |
| 11        |              | 両津港                     | 環境共生型被覆ブロック                  | 平成22年度        | 大型海藻類・魚類・大型底生動物                       | 通常よりも稜線部や開口部の多い構造の<br>被覆ブロックを設置                          | [17]     | -     |
| 12        |              | 焼津港 イオン溶出型藻類増殖ガラス 3     |                              | 平成14年度        | 大型海藻類                                 | 海藻の生長に必要な鉄やリン等を水溶性<br>ガラスにしてモルタルプレート表面に埋め込み、消波ブロックに張り付ける | [17]     | -     |
| 13        |              | 関西国際空港                  | 西国際空港 緩傾斜石積護岸の藻場造成           |               | 緑藻植物、小型褐藻植物、大型褐藻植<br>物など海藻全般          | 海面に対して緩やかな勾配で護岸を造成                                       | [18][19] | p.12  |
| 14        | 生物共生型<br>構造物 | 西ノ浦港 自然調和型防波堤による薬場造成    |                              | 平成14年度~平成16年度 | ホンダワラ類、カジメ、ワカメ                        | 既存防波堤を改修し、藻場造成機能と海水<br>交換機能を付加                           | [20]     | p.13  |
| 15        |              | 神戸空港                    | 戸空港 緩傾斜石積護岸                  |               | 緑藻植物、小型褐藻植物、大型褐藻植<br>物など海藻全般          | 消波ブロックなどを用いた緩傾斜石積護岸<br>による生態系の創出                         | [18]     | -     |
| 16        |              | 島根県松江市                  | 人工リーフ併用防波護岸                  | 平成19年~        | クロメ・ホンダワラ                             | 人工リーフ設置による藻場形成の促進                                        | [18]     | -     |
| 17        |              | 須崎港                     | 防波堤基部の腹付工における藻場造成            | 平成27年度~令和4年度  | 南方系ホンダワラ類、テングサ属(マクサ)                  | 防波堤基部の腹付工の補強により創出さ<br>れた浅場に藻場を造成                         | [21][22] | p.14  |
| 18        |              | 名護市済井出                  | 海草類の新規栽培手法の検討                | 令和5年          | リュウキュウスガモ                             | 人工基質による海草類の栽培                                            | [24]     | p.15  |
| 19        | 陸上栽培         | 本部町大浜                   | 海草類の種苗生産                     | 平成15年度        | リュウキュウスガモ等                            | 陸上水槽において栽培条件を管理し、種子<br>から親株を生産                           | [25]     | p.16  |
| 20        |              | 英虞湾、御殿場海岸               | 御殿場海岸 アマモの種苗生産 平成20年~平成21年 ア |               | アマモ                                   | 陸上水槽において栽培条件を管理し、移植<br>用のアマモ種苗を生産                        | [26]     | p.17  |
| 21        |              | 浦添市西洲地先                 | 海草藻場と地下水との関連性に関する検討          | 令和5年          | 主にリュウキュウスガモ                           | 現地調査等                                                    | [27]     | p.18  |
| 22        |              | 野底海岸                    | アオウミガメによる海草類の食害防止            | 令和6年          | ウミショウブ                                | 食害防止枠の設置<br>(保護区域は環境省「自然共生サイト」に認<br>定)                   | [28]     | -     |
| 23        |              | 崎山湾、網取湾                 | アオウミガメによる海草類の食害防止            | 令和元年~令和3年     | ウミショウブ                                | 採食防止枠および網等の設置                                            | [29]     | -     |
| 24        |              | 君津市沿岸                   | 嵩上げと藻礁人工石材の設置による環境改善         | 平成23年~        | ワカメ                                   | 嵩上げと藻礁人工石材の設置による環境<br>改善                                 | [18]     | p.19  |
| <u>25</u> |              | 周南市大島地区                 | 人工干潟造成による環境創造                | 平成17年度~平成24年度 | アマモ、コアマモ                              | 人工干潟造成によるアマモ場の形成                                         | [30]     | p.20  |
| 26        | その他          | 津田湾地先                   | 離岸堤背後域のアマモ場造成                | 平成16年~        | アマモ                                   | 離岸堤設置によるアマモ場の形成                                          | [31]     | p.21  |
| 27        | 須崎市沿岸        |                         | ウニの除去                        | 平成21年~平成23年   | 南方系ホンダワラ類                             | ダイバーらによるウニ類の除去                                           | [33]     | -     |
| 28        |              | 須崎港                     | 鉄鋼スラグを使用した海藻の着生基盤            | 平成27年度~令和4年度  | 南方系ホンダワラ類、テングサ属                       | 鉄鋼スラグを使用した海藻着生基盤の効果<br>検証                                | [21][23] | p.22  |
| 29        |              | 新宮町相島沿岸                 | オープンスポアバッグ設置による種苗生産          | 平成28年~令和元年    | 小型海藻類・大型海藻類                           | オープンスポアバッグの設置による海藻種苗供給                                   | [32][33] | p.23  |
| 30        |              | 佐世保市浅子地区                | ウニフェンスの設置による磯焼け対策            | 平成25年~        | ホンダワラ                                 | ウニフェンスの設置及びウニの駆除活動に<br>よる磯焼け対策                           | [33]     | p.24  |
| 31        |              | 大島漁港                    | 植食性魚類による海藻の食害防止              | 平成21年         | ノコギリモク                                | エックスブロックに植食性魚類の摂餌、侵<br>入を防ぐ防御材を設置                        | [34]     | -     |

※下線で示された事例は本マニュアル適用範囲の周辺海域における導入実績等を踏まえて選定し、次ページ以降に事例の概略を掲載した。

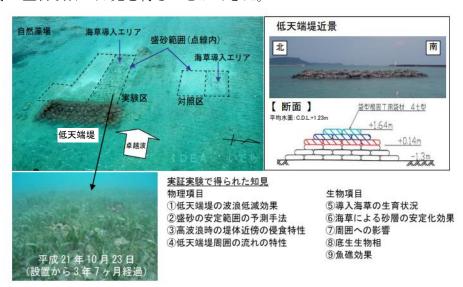
- [3] 内閣府沖縄総合事務局,沖縄県土木建築部,沖縄市東部海浜開発局: "令和4年度第1回中城湾港泡瀬地区環境保全・創造検討委員会 行動計画のとりまとめ(案)(資料-2)", 内閣府沖縄総合事務局那覇港湾・空港整備事務所中城湾港出張所HP, 令和4年(2022年), https://www.dc.ogb.go.jp/nakagusukuwankou/detail.jsp@id=154&menuid=148&funcid=1.html(令和7年3月28日に利用). を加工して作成
- [10] 照屋雅彦, 鈴木真也, 宇江城菜乃:那覇空港滑走路増設事業における貴重藻類の移植について, 国土交通省国土技術研究会論文集, pp.245 248, 2014.
- [11] 照屋雅彦, 酒井洋一, 具志良太, 與儀成也, 坂井隆行, 池田宗平, 加地智彦, 細谷誠一: 熱帯性海草類の生育場創出による藻場造成実証実験, 土木学会論文集B3(海洋開発), Vol.67, No.2, pp.I.298 I.303, 2011.
- [12] 酒井洋一,赤倉康寛,三宅光一,小早川弘,高橋由浩,笠原勉,三島京子:手植え法による熱帯性大型海草移植技術の確立について,海岸工学論文集, Vol.52, pp.1211 1215, 2005.
- [13] 高山百合子, 上野成三, 前川行幸: 播種・株植が不要なアマモ移植工法の現地実証実験, 土木学会論文集B, Vol.64, No.3, pp.180 191, 2008. を加工して作成
- [14] 金澤剛, 横山隆司, 久保忠義, 奥田毅, 小塚海奈里, 酒井大樹, 藤原敏晴:港域における垂下式アマモ場造成に関する現地実験, 土木学会論文集, Vol.79, No.18, 23-18051, 2023. を加工して作成
- [15] 越川義功, 日比野忠史, 吉岡一郎, 出路康夫: ヘドロが堆積した港湾における石炭灰造粒物を使ったアマモ生育基盤, 土木学会論文集B3(海洋開発), Vol.68, No.2, pp.1.1262 1.1267, 2012.
- [16] 森口朗彦, 高木儀昌, 山本潤, 大村智宏, 吉田吾郎, 寺脇利信, 棚田教生, 山野井秀夫:アマモ場造成のための底質安定工法「鋼製マット」の開発, 水工技報, 28, pp.41 65, 2006.
- [17] 国土交通省中部地方整備局名古屋港湾空港技術調査事務所: "第24回民間技術交流会 消波根固ブロックによる水産協調技術―当社の取り組みのご紹介―(株式会社不動テトラ)", 国土交通省中部地方整備局名古屋港湾空港技術調査事務所HP, 令和3年(2021年), https://www.meigi.pa.cbr.mlit.go.jp/event/3020/46/2859/index.html(令和7年3月28日に利用).
- [18] 環境省:"我が国におけるブルーカーボン取組事例集~藻場干潟の保全・創出によるCO:吸収源対策~", ブルーカーボンに関する日本の取り組みHP, 令和5年(2023年), https://www.env.go.jp/earth/ondanka/blue-carbon-jp/materials.html#case(令和7年4月18日に利用)を加工して作成
- [19] 尾崎正明, 伊藤利加, 奥田泰永, 二宮早由子: 関西国際空港島護岸の藻場造成による環境創造効果について, 海岸工学論文集, Vol.47, pp.1196 1200, 2000. を加工して作成
- [20] 環境省: "「豊かな海」を目指した取組の事例集(番号10)", 環境省HP, 平成27年(2015年), https://www.env.go.jp/water/heisa/yutakanaumi.html(令和7年4月18日に利用). を加工して作成
- [21] 壹反田正好:「四国技報 第38号 「港湾における鉄鋼スラグを活用した生物共生型港湾構造物の取り組みについて」,国土交通省四国地方整備局四国技術事務所HP,令和2年(2020年), https://www.skr.mlit.go.jp/yongi/menu/summary/02-1gihou/MOKUJI.html(令和7年10月14日に利用). を加工して作成
- [22] 国土交通省四国地方整備局港湾空港部:令和4年度 四国地方整備局記者発表資料"「みなと」で海の森が創出!~須崎港で藻場が創出。生きもの生息場、CO2吸収源として期待!~",国土交通省四国地方整備局 令和4年(2022年), https://www.skr.mlit.go.jp/pres/r4backnum/index.html(令和7年10月15日に利用). を加工して作成
- [23] 国土交通省四国地方整備局高知港湾・空港整備事務所: "高知港湾・空港整備事務所におけるSDGsの達成に資する取組について", 国土交通省四国地方整備局高知港湾・空港整備事務所HP, 令和4年(2022年), https://www.pa.skr.mlit.go.jp/kouchi(令和7年10月15日に利用). を加工して作成
- [24] 内閣府沖縄総合事務局那覇港湾・空港整備事務所: 令和5年度那覇港環境創造検討業務報告書. を加工して作成
- [25] 笠原勉, 原宏江: 熱帯性海草藻場の再生に関する検討 -ジュゴンと漁業の共生を目指して-, Journal of Advanced Marine Science and Technology Society, Vol.15, No.1, pp.67 72, 2009. を加工して作成
- [26] 環境省: "環境技術実証事業(実証番号090-0803 株分けによるアマモ種苗の大量生産と種苗移植によるアマモ場造成技術", 環境省HP, 平成21年(2009年), https://www.env.go.jp/policy/etv/verified/index.html (令和7年4月21日に利用). を加工して作成
- [27] 港湾空港技術研究所と株式会社エコーとの共同研究結果を加工して作成
- [28] 環境省自然環境局: "認定サイト一覧 | 自然共生サイト | 30by30 | 環境省",環境省HP,令和6年(2024年),https://policies.env.go.jp/nature/biodiversity/30by30alliance/kyousei/nintei/index.html(令和7年3月28日に
- [29] 環境省自然環境局: "第47回自然公園等小委員会 諮問案件 崎山湾・網取湾自然環境保全地域における保全計画の変更及び生態系維持回復事業計画の策定について(資料6-4)", 環境省HP, 令和4年(2022年), は155://www.envgo.jp/council/12nature/、47、1.html(令和7年3月28日に利用)。 [30] 齋藤輝彦, 川島剛央, 貞島一雄, 首藤啓, 菅家英朗, 中林孝之:人工干潟造成による環境創造の実証的研究 −山口県周南市大島干潟を検証して−, 土木学会論文集B2(海岸工学),
- Vol.73, No.2, pp.I\_1273 I\_1278, 2017. を加工して作成
- [31] 小枩裕典, 藤原宗弘, 松内勇貴, 宮川昌志, 末永慶寛:離岸堤周辺におけるアマモ種子の輸送・滞留機構に関する研究, 土木学会論文集B3(海洋開発), Vol.68, No.2, pp.I\_1256 I\_1261, 2012. を加工して作成
- [32] 水産庁. "磯焼け対策ガイドライン(令和3年3月)(第7章)". 水産庁HP. 令和3年(2021年). https://www.jfa.maff.go.jp/j/gyoko\_gyozyo/g\_zyoho\_bako/mobahozen\_sozo\_isoyaketaisaku.html(令和7年4月18日に利用). を加工して作成
- [33] 水産庁. "磯焼け対策ガイドライン(令和3年3月)(第8章)". 水産庁HP. 令和3年(2021年).
- https://www.jfa.maff.go.jp/j/gyoko\_gyozyo/g\_zyoho\_bako/mobahozen\_sozo\_isoyaketaisaku.html(令和7年4月18日に利用). を加工して作成 [34] 柴田早苗, 青田徽, 山仲洋紀, 山本方人:長崎県壱岐市大島における磯焼け対策技術の検証, 日本水産工学会学術講演会, pp.61 - 64, 2010.

| 事例名  | No. 2 海草類の移植:栄養株移植(手植え移植)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的   | 手植えによる海草移植の実用性の検証                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 実施箇所 | 中城湾港(泡瀬地区)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 実施時期 | 平成 14 年~平成 22 年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 技術概要 | 【背景】 ・沖縄本島に生育する大型海草(リュウキュウスガモ等)を対象として、ダイバーによる手植え移植が実施された。 【結果等】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | ・移植7年後(平成15年2月~平成22年1月)には手植え移植藻場の面積が3<br>倍以上になった。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | ・被度は移植後の半年間で減少したが、その後は増減を繰り返し、平成22年1月には15%まで回復した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 基础直接 (千萬格子状仁移植)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 移植範囲内の面積 (ar)   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 図 移植7年後までの藻場面積(上)と被度(下)の推移                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

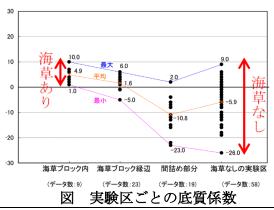
出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[3] 内閣府沖縄総合事務局,沖縄県土木建築部,沖縄市東部海浜開発局:"令和4年度第1回中城湾港泡瀬地区環境保全・創造検討委員会 行動計画のとりまとめ(案)(資料-2)",内閣府沖縄総合事務局那覇港湾・空港整備事務所中城湾港出張所HP,令和4年(2022年),

https://www.dc.ogb.go.jp/nakagusukuwankou/detail.jsp@id=154&menuid=148&funcid=1.html(令和7年3月28日に利用).


| 事例名  | No. 4 海草藻場の生育場の保全・創出       |
|------|----------------------------|
| 目的   | 潜堤構築:海草の生育において阻害要因となる波浪の抑制 |
| 実施箇所 | 中城湾港(泡瀬地区)                 |
| 実施時期 | 平成 17 年度~平成 19 年度          |
|      |                            |

# 技術概要【背景】


- ・海草の生育において阻害要因となる波浪を抑えるため、袋型根固工により低 天端堤(潜堤)を設置し、その背後に移植した海草が生育しやすいよう、砂 (盛砂)を投入した。
- ・波を抑えるための低天端堤には魚やウニ等の生息する漁礁としての効果も期待される。

# 【結果等】

・低天端堤設置後の実証実験から、高波浪時の堤体周辺の侵食特性や流れの特性等の物理的項目に加え、海草の導入による底質の安定化や蝟集生物の増加等の生物項目の知見を得ることができた。



# 図 低天端堤と盛砂による海草生育場の創造実証実験のイメージ図



出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[3] 内閣府沖縄総合事務局,沖縄県土木建築部,沖縄市東部海浜開発局:"令和4年度第1回中城湾港泡瀬地区環境保全・創造検討委員会 行動計画のとりまとめ(案)(資料-2)",内閣府沖縄総合事務局那覇港湾・空港整備事務所中城湾港出張所 HP,令和4年(2022年),

https://www.dc.ogb.go.jp/nakagusukuwankou/detail.jsp@id=154&menuid=148&funcid=1.html(令和7年3月28日に利用).

| 事例名            | No.7 海草類の移植(アマモ移植)                                                                                                                                  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的             | アマモ場の造成・再生                                                                                                                                          |
| 実施箇所           | 英虞湾                                                                                                                                                 |
| 実施時期           | 平成 16 年度                                                                                                                                            |
| 技術概要           | 【背景】                                                                                                                                                |
|                | ・播種・株植作業を全く行わず、かつ、天然アマモ場へダメージを与えずにアマモ移植を行う新しい移植方法を考案し、現地海域で実証実験を実施した。<br>・本移植工法は、天然アマモ場の周辺に移植マットを設置することによりアマ                                        |
|                | モが定着したマットが形成され、このマットを移設することで良好にアマモ<br>移植を完了できる簡易なアマモ移植工法である。                                                                                        |
|                | 【結果等】 ・移植したアマモ場の追跡モニタリング調査により、移植から2年後も天然のアステト同様の推移を示し、野菜の形成と拡大が確認された。                                                                               |
|                | アマモと同様の推移を示し、群落の形成と拡大が確認された。                                                                                                                        |
|                | <ul> <li>(年) 第1ステップ</li> <li>● 移植用マットを設置。</li> <li>● マット上にアマモ種子が自然落下し発芽することによりマットにアマモが定着。</li> <li>第2ステップ</li> <li>● アマモが定着したマットを移植地へ移設。</li> </ul> |
|                |                                                                                                                                                     |
|                | 巻上げによる落下   移植用マット                                                                                                                                   |
|                | 図 播種・株植が不要なアマモ移植方法の概念図                                                                                                                              |
|                | ### ### ### ### ### ### ### ### ### ##                                                                                                              |
|                | ◆ 大規模移植工法実験 → ◆ ・・・・ 追跡モニタリング調査 ・・・・                                                                                                                |
|                | 1500  - 本移植工法 (                                                                                                                                     |
|                | 10月 1月 4月 7月 10月 1月 4月 7月 10月 1月 4月 7月                                                                                                              |
|                | 2004年 2005年 2006年 2007年 (a) アマモ密度                                                                                                                   |
|                | 200 マット移設 200 200 200 200 200 200 200 200 200 20                                                                                                    |
|                | Ē 120                                                                                                                                               |
|                | 40                                                                                                                                                  |
|                | 10月 1月 4月 7月 10月 1月 4月 7月 10月 1月 4月 7月                                                                                                              |
|                | 2004年 2005年 2006年 2007年                                                                                                                             |
|                | ® 移植後のモニタリング調査結果                                                                                                                                    |
| 11.44.) [44.44 | □ N 1□ PA                                                                                                                                           |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[13] 高山百合子, 上野成三, 前川行幸: 播種・株植が不要なアマモ移植工法の現地実証実験, 土木学会論文 集 B, Vol. 64, No. 3, pp. 180 - 191, 2008.

| 事例名  | No.8 垂下式のアマモ栽培試験 |
|------|------------------|
| 目的   | アマモ場の造成・再生       |
| 実施箇所 | 阪南港              |
| 実施時期 | 令和元年度~令和3年度      |
|      |                  |

# 技術概要【背景】

- ・実海域でアマモ種子と底質を入れた小規模な容器を所定の水深に垂下設置し てアマモの生育実験を実施し、垂下式アマモ場造成の可能性を検討した。
- ・実験は2019年(令和元年)度から2021年(令和3年)度の3ヶ年にわたり 実施され、毎年の秋に新たな実験容器を設置した。設置水深、容器の構造の 違いに着目して、アマモの生育状況を観察した。

# 【結果等】

・実験の結果、水面下 1.0~3.0m に垂下設置した容器からアマモの発芽生育が 確認され、さらに2年目の株からは種子が再生産され、垂下式アマモ場造成 においても経年的なアマモ場造成の可能性が示された。

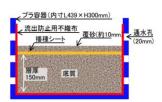
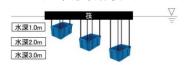
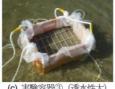



図 実験容器模式図





図 実験容器の垂下模式図



(a) 実験容器① (基準)



(b) 実験容器②(容器高さ低)



(c) 実験容器③ (透水性大)

る実験容器一覧



図 2020年(令和2年)度実験におけ

#### 表 各年度の発芽生育数と平均葉長

|             |        | 2X II      | 1 /20 | / Ju/j . | p     | CC 1 * | 7 A A     |          |          |
|-------------|--------|------------|-------|----------|-------|--------|-----------|----------|----------|
|             |        | 2019(R1)年度 |       | 2020(R   | (2)年度 | 20     | 021(R3)年度 |          |          |
| 調査日         |        | 2020/3/24  |       | 2021/    | /3/24 |        | 2         | 2022/4/8 | 3        |
| 実           | 験容器    | 1          | 1     | 2        | 3     | 4      | 1         | 2        | <b>⑤</b> |
|             | h=1 0  | 発芽せず       | 33本   | 11本      | 21本   | 1本     | 25本       | 5本       | 23本      |
| 設           | h=1.0m | 光分セリ       | 9.8cm | 5.6cm    | 6.5cm | 18.0cm | 5.2cm     | 5.7cm    | 7.0cm    |
| 置           | h=2.0m | 発芽せず       |       |          |       |        | 39本       |          |          |
| 水           |        | ## E 9     |       |          |       |        | 5.6cm     | ]        |          |
| 深<br>h=3.0m |        | 発芽せず       |       | /        |       |        | 1本        |          |          |
|             | n-3.0m | 元才ピリ       |       |          |       |        | 5.5cm     |          |          |

※2019(R1)年度は、海水温がアマモの発芽適温まで低下しなかった可能性があり、アマ モが発芽しなかった一因と考えられた。

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[14]金澤剛, 横山隆司, 久保忠義, 奥田毅, 小塚海奈里, 酒井大樹, 藤原敏晴:港域における垂下式アマモ 場造成に関する現地実験, 土木学会論文集, Vol. 79, No. 18, 23-18051, 2023.

| 事例名  | No. 13 緩傾斜石積護岸の藻場造成                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 目的   | 緩傾斜石積護岸の採用による藻場の生育場を造成                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| 実施箇所 |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 実施時期 | 昭和 63 年~                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| 技術概要 | <ul> <li>【背景】</li> <li>・広範囲に光が届く緩傾斜石積護岸の採用により、藻場の生育場を造成した。</li> <li>・1 期空港島において種苗移植を開始した直後の1989年(平成元年)4月から海藻分布状況の調査を開始し、現在まで30年以上にわたってモニタリング調査を継続している。</li> <li>【結果等】</li> <li>・空港島全体の海藻着生面積(藻場面積)は54haであり、大阪湾の藻場面積のおよそ2割に相当する。</li> <li>・緩傾斜石積護岸の多様度指数は、1994年(平成6年)度あたりから0.4~1.2の範囲で、自然海域の0.7~1.2と同程度で推移しており、自然海域と同等の多様性のある海藻群落が形成されていると考えられる※[19]。</li> </ul> |  |  |  |  |  |  |
|      | 海藻                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|      | 緩傾斜石積護岸                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|      | 図 緩傾斜石積護岸のイメージ図                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|      | 藻場の生育状況                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|      | 海藻着生総節傾(ha)<br>60 - ■ 1期空港島<br>50 -<br>40 -<br>30 -                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|      | 20 - 10 - 0 4 9 2 9 2 9 3 9 3 3 3 9 3 9 3 9 2 9 3 9 3                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|      | 00   00   01   02   03   04   03   04   05   04   05   04   05   05   05                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |

出典)「技術概要」における背景や結果等の説明や図は、以下の資料[18]を元に加工して作成(※ただし、結果等の一部は資料[19]を引用)。

図 藻場の生育状況

- [18] 環境省:"我が国におけるブルーカーボン取組例集~薬場干潟の保全・創出による  $CO_2$ 吸収源対策~", ブルーカーボンに関する日本の取り組み HP, 令和 5 年(2023 年),
  - https://www.env.go.jp/earth/ondanka/blue-carbon-jp/materials.html#case(令和7年4月18日に利用).
- [19]尾崎正明,伊藤利加,奥田泰永,二宮早由子:関西国際空港島護岸の藻場造成による環境創造効果について,海岸工学論文集,Vol. 47,pp. 1196 1200, 2000.

| 事例名  | No. 14 自然調和型防波堤による藻場造成                  |
|------|-----------------------------------------|
| 目的   | 既存防波堤の改修に伴って消失する藻場 (6,670m²) を回復及び良好な水質 |
|      | 環境を維持するために実施                            |
| 実施箇所 | 西ノ浦港                                    |
| 実施時期 | 平成 14 年度~平成 16 年度                       |
| 技術概要 | 【背景】                                    |
|      | ・既存防波堤を改修し、藻場造成機能(藻場の生育基盤の創出)と海水交換機     |
|      | 能(約20m間隔に開口部を配置)を有する自然調和型防波堤を整備した。      |
|      | 【結果等】                                   |
|      | ・整備後に実施されたモニタリングでは、藻場の復元面積の割合が年々増加し     |
|      | ている。モニタリング3年目には大型多年生海藻のカジメが増え、消失した      |
|      | 藻場面積の9割強が復元された。                         |
|      |                                         |

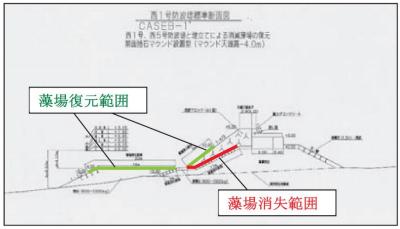
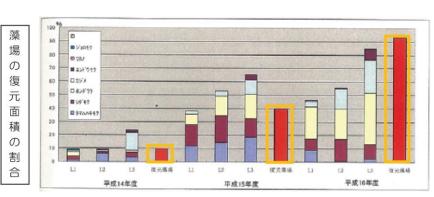




図 藻場造成計画断面図



出典 「西1号防波堤モニタリンク調査委託業務報告書」(兵庫県家島町、株式会社コベック、平成17年3月)

- 注 1) 縦軸は藻場の復元面積の割合を示す。
- 注 2) 復元藻場とは、隣接する現存の藻場の状況が概ね疎性分布であることから、藻場の目視調査 結果より、造成された捨て石マウンドにおける藻場対象種(ホンダワラ類、カジメ、ワカメ)の 合計の被度が操性以上である藻場を示す。

# 図 藻場構成種合計の年推移

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[20]環境省:"「豊かな海」を目指した取組の事例集(番号10)", 環境省HP, 平成27年(2015年), https://www.env.go.jp/water/heisa/yutakanaumi.html (令和7年4月18日に利用).

| 事例名  | No. 17 防波堤基部の腹付工における藻場造成                                                                                                                                                               |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的   | 防波堤の改良工事により創出された浅場を活用した藻場造成実証実験                                                                                                                                                        |
| 実施箇所 | 須崎港                                                                                                                                                                                    |
| 実施時期 | 平成27年度~令和4年度                                                                                                                                                                           |
| 技術概要 | 【背景】 ・高知県須崎港湾口地区の防波堤改良事業で創出される浅場を活用し、鉄鋼スラグを活用した生物共生型港湾構造物の実証試験を行っている(p.22 と関連)。 【結果等】 ・周辺海域では、磯焼けによる藻場の消失が見られるなか、海藻(南方系ホンダワラ類、マクサ(テングサ属等))が繁茂し、様々な生物の生息が確認され                           |
|      | ている。 ・港湾構造物の生物多様性の機能が向上でき、水産資源育成(イセエビ幼生の<br>着底、海藻を餌とするアワビ等の増加)の一定の効果が期待できることが判<br>明した。 ・ブルーカーボンの観点から、創出された藻場(面積:2,034m²)が吸収する CO <sub>2</sub><br>量を試算したところ、年間約1.3t 吸収することが見込まれる結果であった。 |
|      | 図 須崎港湾口地区における薬場造成実証実験実施場所                                                                                                                                                              |
|      | 西防波堤基部(H3O.6)  西防波堤基部(H3O.6)  東防波堤基部(R2.6)                                                                                                                                             |

- 出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。
- [21] 壹反田正好: 「四国技報 第38号 港湾における鉄鋼スラグを活用した生物共生型港湾構造物の取り組み について」, 国土交通省四国地方整備局四国技術事務所 HP, 令和2年(2020年),
  - https://www.skr.mlit.go.jp/yongi/menu/summary/02-1gihou/MOKUJI.html(令和7年10月14日に利用).

試験後

防波堤基部の腹付工に造成した藻場

[22]国土交通省四国地方整備局港湾空港部:令和 4 年度 四国地方整備局記者発表資料"「みなと」で海の森が創出!~須崎港で藻場が創出。生きもの生息場、C02 吸収源として期待!~",国土交通省四国地方整備局 HP,令和 4 年(2022 年),https://www.skr.mlit.go.jp/pres/r4backnum/index.html(令和 7 年 <math>10 月 15 日に利用).

| 事例名  | No. 18 海草類の新規栽培手法の検討                |
|------|-------------------------------------|
| 目的   | 従来砂礫底に分布する海草類について、人工基質を用いた新規栽培手法を   |
|      | 検討                                  |
| 実施箇所 | 名護市済井出                              |
| 実施時期 | 令和5年                                |
| 技術概要 | 【背景】                                |
|      | ・海草類を人工構造物へ付加する可能性を検討するため、人工物を含めた効率 |
|      | のよい基質の把握及び生育基盤の設置方式に関する実験が行われている。   |
|      | 【結果等】                               |
|      | ・特にリュウキュウスガモについては人工軽石やサンゴ礫に活着した例や、浦 |
|      | 添第一防波堤の人工タイドプール内に自然加入した例が知られており、この  |
|      | 特性に着目した室内実験を実施中である。                 |
|      |                                     |
|      |                                     |
|      |                                     |
|      |                                     |
|      |                                     |
|      |                                     |
|      |                                     |
|      |                                     |
|      | <br>  図 人工基質を用いた海草栽培のイメージ           |
|      |                                     |
|      |                                     |
|      |                                     |
|      |                                     |
|      |                                     |
|      |                                     |
|      |                                     |
|      |                                     |
|      |                                     |
|      |                                     |
|      |                                     |
|      |                                     |
|      | 図 人工タイドプール内で確認されたリュウキュウスガモの実生       |
|      |                                     |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。 [24]内閣府沖縄総合事務局那覇港湾・空港整備事務所:令和5年度那覇港環境創造検討業務報告書.

| 事例名  | No. 19 海草類の種苗生産                                               |
|------|---------------------------------------------------------------|
| 目的   | 陸上水槽を活用したリュウキュウスガモの種苗の生産                                      |
| 実施箇所 | 本部町大浜                                                         |
| 実施時期 | 平成 15 年度                                                      |
| 技術概要 | -11112                                                        |
|      | ・沖縄県栽培漁業センターの陸上水流式水槽を活用し、リュウキュウスガモの                           |
|      | 種苗を大量生産する技術開発に取り組み、その技術を確立した。                                 |
|      | 【結果等】                                                         |
|      | ・採取したリュウキュウスガモの果実は、平らなバケットの中で海水に浸して                           |
|      | おくと、成熟度の高い果実から順番に裂開するため、2日間程度ですべての                            |
|      | 種子が果実から飛び出し、種子が採取できた。<br> ・採取した種子は、プラスチック製の箱型ザルに重ならないよう均一に入れ、 |
|      | 流水式水槽に設置すると2日程度ですべての種子が発芽し、1ヶ月で2cm程                           |
|      | 度の幼体に生長した。                                                    |
|      | ・大型流水式水槽に細砂を敷き詰め、発芽し2cm程度に生長したリュウキュウ                          |
|      | スガモの幼体を植え付けて育苗した。                                             |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      | 天然海水(約20L/分)かけ流し                                              |
|      | 水質管理;                                                         |
|      | 水温·PH·水位·流量                                                   |
|      | 2cm間隔で植え付け                                                    |
|      |                                                               |
|      |                                                               |
|      | 20 cm厚 市販の海砂                                                  |
|      | 20 cm厚 市販の海砂                                                  |

図 発芽したリュウキュウスガモ及び陸上水槽のイメージ図

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。 [25]笠原勉, 原宏江: 熱帯性海草藻場の再生に関する検討 -ジュゴンと漁業の共生を目指して- , Journal of Advanced Marine Science and Technology Society, Vol. 15, No. 1, pp. 67-72, 2009.

| 事例名  | No. 20 アマモの種苗生産                                                                                              |
|------|--------------------------------------------------------------------------------------------------------------|
| 目的   | アマモ場の再生                                                                                                      |
| 実施箇所 | 英虞湾、御殿場海岸                                                                                                    |
| 実施時期 | 平成 20 年~平成 21 年                                                                                              |
| 技術概要 | 【背景】                                                                                                         |
|      | ・天然のアマモ場から少量の親株を採取し、水温が安定した地下海水のかけ流                                                                          |
|      | しができる陸上水槽を用いて、アマモの生育に適した水温と光条件で移植用                                                                           |
|      | のアマモ種苗を株の分枝を利用して大量育成を実施した。                                                                                   |
|      | 【結果等】                                                                                                        |
|      | ・移植の2ヶ月前に生分解性のヤシ繊維マットをアマモ株の下に敷き込み、アマモ種苗を定着させた。その後にアマモ種苗と一体化したマットを潜水作業                                        |
|      | マモ種田を足有させた。その後にアマモ種田と一体化したマットを借入作業  により海底に設置した。                                                              |
|      | でより海路に設置した。<br> ・水温、光条件等を管理した陸上水槽でアマモの増殖を開始し、増殖開始から                                                          |
|      | 1年2ヶ月後には増殖率が当初の約50倍に達した。                                                                                     |
|      |                                                                                                              |
|      | 最適生育条件で管理<br>水温 ・                                                                                            |
|      | が温・<br>光条件<br>付着生物 など                                                                                        |
|      |                                                                                                              |
|      | 少量の親株 栄養株)を採取                                                                                                |
|      | マッドに定着                                                                                                       |
|      | させ移植                                                                                                         |
|      |                                                                                                              |
|      | 天然アマモ場 管理型陸上水槽 海 域                                                                                           |
|      | 天然アマモ場 管理型陸上水槽 海 域<br>図 中間育成法のイメージ図                                                                          |
|      |                                                                                                              |
|      |                                                                                                              |
|      |                                                                                                              |
|      |                                                                                                              |
|      |                                                                                                              |
|      |                                                                                                              |
|      |                                                                                                              |
|      |                                                                                                              |
|      | 図中間育成法のイメージ図                                                                                                 |
|      | 図 中間育成法のイメージ図                                                                                                |
|      | 図 中間育成法のイメージ図 <b>陸上水槽でのアマモの増殖</b> アマモ種苗の定着したマット 図 中間育成法の実施事例                                                 |
|      | 図 中間育成法のイメージ図 <b>陸上水槽でのアマモの増殖</b> アマモ種苗の定着したマット 図 中間育成法の実施事例                                                 |
|      | 図 中間育成法のイメージ図 <b>陸上水槽でのアマモの増殖</b> アマモ種苗の定着したマット 図 中間育成法の実施事例                                                 |
|      | 図 中間育成法のイメージ図 <b>陸上水槽でのアマモの増殖</b> アマモ種苗の定着したマット 図 中間育成法の実施事例                                                 |
|      | 図 中間育成法のイメージ図 <b>陸上水槽でのアマモの増殖</b> アマモ種苗の定着したマット 図 中間育成法の実施事例                                                 |
|      | 図 中間育成法のイメージ図 <b>陸上水槽でのアマモの増殖</b> アマモ種苗の定着したマット 図 中間育成法の実施事例  50 40 30 20 10 1.0 1.3 3.1                     |
|      | 図 中間育成法のイメージ図 <b>陸上水槽でのアマモの増殖</b> アマモ種苗の定着したマット 図 中間育成法の実施事例  50 40 30 20 10 1,0 1,3 3,0 16,9 17,4 17,4 17,4 |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[26]環境省: "環境技術実証事業 (実証番号 090-0803 株分けによるアマモ種苗の大量生産と種苗移植によるアマモ場造成技術", 環境省 HP, 平成 21 年(2009 年),

https://www.env.go.jp/policy/etv/verified/index.html (令和7年4月21日に利用).

| 事例名  | No. 21 海草藻場と地下水との関連性に関する検討                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的   | 流入する地下水が海草藻場へ与える影響について、海草藻場の被度や栄養塩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 等の観点から検討                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 実施箇所 | 浦添市西洲地先                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 実施時期 | 令和5年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 技術概要 | 【背景】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | ・海草藻場の存在と周辺の地下水の関連性を検討するため、令和5年より浦添                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | ふ頭地区西洲地先で現地測定等が実施された。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 【結果等】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | ・干潮時に護岸から低塩分の水が流入しており、とくに海草藻場の高被度帯に                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | は塩分 30psu 以下の地下水流入が確認された。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | The second secon |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 塩分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | (psu)<br>— 34.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | <b>-</b> 34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | - 33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | -315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | - 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | - 28.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 0 100 200 300 400 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | 図 西洲地先における地下水流入に起因する塩分分布                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | ET INTERIOR OF TANKET AND COME A DAME OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。 [27]港湾空港技術研究所と株式会社エコーとの共同研究

| 事例名  | No. 24 嵩上げと藻礁人工石材の設置による環境改善                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的   | 環境改善                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 実施箇所 | 君津市沿岸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 実施時期 | 平成 23 年~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 技術概要 | 【背景】<br>・海底くぼ地での光量不足と周辺での貧酸素海水の滞留により、海底の生物環                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 境が変化した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | ・平成23年度に強度改良した浚渫土による嵩上げと藻礁人工石材の設置を行った。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 【結果等】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | ・令和4年度時点で12haの藻場を造成し、海域環境を改善したとともに、地<br>形を安定させたことで、貧酸素海水の滞留を解消した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | では、<br>では、<br>をは、<br>をは、<br>をは、<br>をは、<br>をは、<br>をは、<br>をは、<br>を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 図 改良イメージ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 12<br>10<br>: 実験区<br>: 対照区<br>(を) 40<br>(を) 8<br>(を) 40<br>(する) 20<br>(を) 40<br>(する) 30<br>(する) 30<br>(する) 40<br>(する) 40<br>(<br>(する) 40<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>( |





図 藻場に設定した実験区と対照区 における溶存酸素濃度の推移

図 観測期間(15 日間)に占める貧酸素水塊への暴露時間の割合

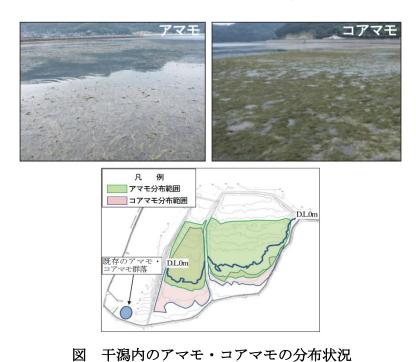
出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[18]環境省:"我が国におけるブルーカーボン取組例集~藻場干潟の保全・創出による  $CO_2$ 吸収源対策~", ブルーカーボンに関する日本の取り組み HP, 令和 5 年(2023 年),

https://www.env.go.jp/earth/ondanka/blue-carbon-jp/materials.html#case(令和7年4月18日に利用).

| 事例名            | No. 25 人工干潟造成による環境創造 |
|----------------|----------------------|
| 目的             | アマモ場の形成要因の検証         |
| 実施箇所           | 周南市大島地区              |
| 実施時期           | 平成 17 年度~平成 24 年度    |
| <b>坛</b> 綠 椰 亜 | 【北早】                 |

# 技術概要【背景】


・アサリ成育場の整備を目的として造成された大島干潟に、アマモ場が形成された要因について検証した。

# 【結果等】

- ・大島干潟は静穏な海域であり、周辺海域に小規模なアマモ・コアマモ群落が あるため、湾内に種子が供給、定着することで藻場が形成されたと考えられ た。
- ・干潟造成前の周辺海域では貧酸素状態が出現していたが、アマモの生育密度 が高い地点では、海底上 0.3m まで DO(溶存酸素量)は飽和状態となってお り、水質の改善が図られたと考えられた。



図 大島人工干潟の整備海域



出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[30] 齋藤輝彦, 川島剛央, 貞島一雄, 首藤啓, 菅家英朗, 中林孝之: 人工干潟造成による環境創造の実証的研究 -山口県周南市大島干潟を検証して-, 土木学会論文集 B2(海岸工学), Vol. 73, No. 2, pp. I\_1273 - I\_1278, 2017.

| 事例名  | No. 26 離岸堤背後域のアマモ場造成                                                                                                                                                                                                                                                                                                                                                            |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的   | アマモ場の造成・再生                                                                                                                                                                                                                                                                                                                                                                      |
| 実施箇所 | 津田湾地先                                                                                                                                                                                                                                                                                                                                                                           |
| 実施時期 | 平成 16 年~                                                                                                                                                                                                                                                                                                                                                                        |
| 技術概要 | 【背景】 ・香川県さぬき市津田湾では、1996年(平成8年)に離岸堤背後域へアマモ場造成が実施されて以降、新たなアマモ場造成地として離岸堤背後域の活用が期待されている。 ・アマモ場周辺の水理条件、底質環境を把握するとともに、3次元流体力学モデルによる数値計算によって、アマモ種子の輸送状況について評価を行い、アマモ場造成技術の検討を行った。 【結果等】 ・検討の結果、アマモ場の復元・再生地として離岸堤背後域の利用が有効な手段であることが明らかになった。 ・一方、底層流速2cm/s以下、シールズ数0.002以下のような恒常的な静穏域(離岸堤背後域中央付近)では、浮泥や寄り藻等の堆積による光量不足や競合生物による生息環境の競合、離岸堤開口部付近では、高波浪時の砂面変動などによってアマモの生育環境としては厳しくなることが予想された。 |
|      | N 34* 50                                                                                                                                                                                                                                                                                                                                                                        |
|      | 図 調査対象海域(香川県さぬき市)<br>                                                                                                                                                                                                                                                                                                                                                           |
|      | N<br>0.014<br>0.010<br>0.006<br>0.002<br>0.006<br>0.006<br>0.006<br>0.006                                                                                                                                                                                                                                                                                                       |

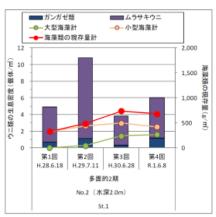
出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[31]小枩裕典,藤原宗弘,松内勇貴,宮川昌志,末永慶寛:離岸堤周辺におけるアマモ種子の輸送・滞留機構に関する研究,土木学会論文集B3(海洋開発),Vol.68,No.2,pp.I\_1256 - I\_1261, 2012.

図 対象海域のシールズ数分布

| 事例名  | No. 28 鉄鋼スラグを使用した海藻の着生基盤                                                                                                                                                                                                                                                                                                                                                 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的   | 鉄鋼スラグを使用した海藻着生基盤の効果検証                                                                                                                                                                                                                                                                                                                                                    |
| 実施箇所 | 須崎港                                                                                                                                                                                                                                                                                                                                                                      |
| 実施時期 | 平成27年度~令和4年度                                                                                                                                                                                                                                                                                                                                                             |
| 技術概要 | 【背景】 ・須崎港の防波堤改良事業(防波堤の粘り強い化)により、腹付工を施工した。その結果、防波堤背後に幅約24m、水深約4mの海藻の生育に適した浅場が造成された。この浅場に海藻が着生可能な基質を増やす事を目的に、鉄の製造時に副産物として発生する鉄鋼スラグを有効利用した資材(人工砕石、藻場造成ユニット)の設置を行った(p.14と関連)。 【結果等】 ・実証試験区域(延長約50m)に鉄鋼スラグを活用した人工砕石、藻場ユニット(周辺海域に鉄分を供給させる)を設置し、藻礁基盤(海藻類を繁殖させる基盤)を整備した。 ・平成30年からは鉄鋼スラグを有効活用した水和固体プレートなどを設置し、水深の変化や藻礁基盤の違いによる藻場造成にも取り組んでいる。  *********************************** |
|      | 人工砕石       薬場造成ユニット                                                                                                                                                                                                                                                                                                                                                      |
|      | 図 実証実験区域に設置された<br>人工砕石、藻場造成ユニット、水和固体プレート                                                                                                                                                                                                                                                                                                                                 |

- 出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。
- [21] 壹反田正好:「四国技報 第 38 号 港湾における鉄鋼スラグを活用した生物共生型港湾構造物の取り組みについて」,国土交通省四国地方整備局四国技術事務所 HP,令和 2 年(2020 年), https://www.skr.mlit.go.jp/yongi/menu/summary/02-1gihou/MOKUJI.html(令和 7 年 10 月 14 日に利用).
- [23]国土交通省四国地方整備局高知港湾・空港整備事務所: "高知港湾・空港整備事務所における SDG s の達成に資する取組について", 国土交通省四国地方整備局高知港湾・空港整備事務所 HP, 令和 4 年(2022年), https://www.pa.skr.mlit.go.jp/kouchi(令和 7 年 10 月 15 日に利用).


|  | 事例名  | No. 29 オープンスポアバッグ設置による種苗生産 |
|--|------|----------------------------|
|  | 目的   | 磯焼け対策                      |
|  | 実施箇所 | 新宮町相島沿岸                    |
|  | 実施時期 | 平成 28 年~令和元年               |

# 技術概要【背景】

- ・ガラモ場が消失した海域に、潮の流れにより海藻のタネが移動することを考慮して藻場を回復させた。
- ・オープンスポアバッグ法とは、海藻の成体を不織布や網袋に差し込み、下端 の袋に石を入れて、海中へ投入する方法である。

# 【結果等】

- ・オープンスポアバッグを潮の上流に設置することで、下流域に藻場が出現することを期待し、100袋以上設置した。
- ・海藻の生産力がウニの食圧に勝り、徐々に海藻の現存量が増加した。また、 食害対策を始めて3年目の2019年(令和元年)には、大型海藻の被度が約 10~20%まで回復した。



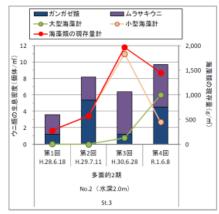



図 ウニの密度と海藻の現存量の経時変化



図 対策前後の状況

- 出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。
- [32]水産庁: "磯焼け対策ガイドライン (令和3年3月) (第7章)", 水産庁 HP, 令和3年(2021年), https://www.jfa.maff.go.jp/j/gyoko\_gyozyo/g\_zyoho\_bako/mobahozen\_sozo\_isoyaketaisaku.html (令和7年4月18日に利用)
- [33]水産庁: "磯焼け対策ガイドライン(令和3年3月)(第8章)", 水産庁HP, 令和3年(2021年), https://www.jfa.maff.go.jp/j/gyoko\_gyozyo/g\_zyoho\_bako/mobahozen\_sozo\_isoyaketaisaku.html (令和7年4月18日に利用).

| 事例名  | No. 30 ウニフェンスの設置による磯焼け対策 |
|------|--------------------------|
| 目的   | 磯焼け対策                    |
| 実施箇所 | 佐世保市浅子地区                 |
| 宝施時期 | <b>亚</b> 成 25 年~         |

### 夫旭时别 平成 25 平<sup>2</sup>

# 技術概要【背景】

- ・平成10年頃より磯焼けが発生し、カサゴやアワビなどの資源が減少した。
- ・ウニによる食害を防ぐため、ウニが藻場へ侵入できないようにフェンスを藻 場周辺に設置した。また、フェンスの設置に加え、ウニの除去も並行して実 施した。

# 【結果等】

- ・フェンス設置箇所周辺にワカメやアカモクを主体とした藻場が形成された。藻場形成後は、フェンスを移動させ、活動面積を当初の3倍にした。
- ・フェンスの設置に加え、ウニの除去と海藻のタネの供給を継続的に実施することで、活動 3 年目までにウニの個体数は  $0.6\sim3.4$  個体/ $\mathrm{m}^2$  と低く抑えることができた。



図 ウニフェンスの製作状況

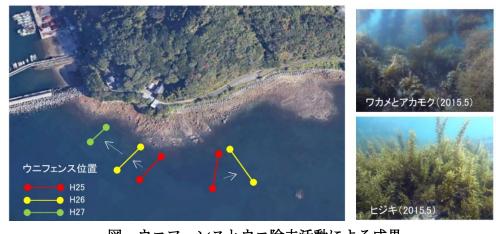



図 ウニフェンスとウニ除去活動による成果

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[33]水産庁: "磯焼け対策ガイドライン (令和3年3月) (第8章)", 水産庁 HP, 令和3年(2021年), https://www.jfa.maff.go.jp/j/gyoko\_gyozyo/g\_zyoho\_bako/mobahozen\_sozo\_isoyaketaisaku.html (令和7年6月30日に利用).

# 1-3. サンゴ類

サンゴ類の保全・再生に関する既存事例の一覧表を表 1-3 に示す。

移植・移築については、各地で実績が蓄積されており、主要なサンゴ類に関しては一定のノウハウが確立されている。ただし、種ごとに産卵時期が異なることや白化の状況等も踏まえて、移植の実施時期には十分な配慮が求められる。また、枝状コモンサンゴ属については、移植手法の検討が必要とされている。

生物共生型構造物の導入も県内各地で進められており、概ね一定の効果が確認されているが、同様の構造物であっても海域条件により効果が発現しにくい場合があることに留意が必要である。

養殖については、実績が徐々に蓄積されつつあるものの、種によっては養殖が難しい。 また、手法によっては漁業権の取得や専用施設の整備が必要になるなど、環境面での条件 整備が求められる。

# 表 1-3 サンゴ類の保全・再生に関する既存事例

| No.*      | 区分                   | 実施場所等                                 | 事例名                             | 時期                                  | 対象                                        | 仕様                                                                     | 出典           | 掲載ページ |  |
|-----------|----------------------|---------------------------------------|---------------------------------|-------------------------------------|-------------------------------------------|------------------------------------------------------------------------|--------------|-------|--|
| 1         |                      | 那覇港                                   | 嵩上げ移植                           | 平成19年                               | サンゴ                                       | 建材ブロックで嵩上げしたワイヤーメッシュ上に均等にサンゴを置き、<br>結束バンドや針金等で群体を固定                    | [35]         | p.27  |  |
| 2         | <u>2</u><br><u>3</u> | 那覇空港                                  | 水中ボンドによる固定                      | 平成26年                               | サンゴ                                       | タガネと金ブラシを用いて基質上の付着生物を掻き落とし、水中ボンドでサンゴ類を固定                               | [36][37]     | p.28  |  |
| 3         |                      | 那覇空港                                  | 群集サンゴの移植                        | 平成26年                               | サンゴ(枝状サンゴ群集)                              | 枝状サンゴの群集構造を崩さないように、構造を維持したまま移植用<br>カゴに採取・運搬して移植                        | [36][37]     | p.29  |  |
| 4         |                      | 那覇空港                                  | 大型サンゴ移築                         | 平成26年                               | サンゴ(大型塊状群体)                               | 人力では運搬困難な大型サンゴを水中バックホウ等を用いて採取、<br>台船のクレーンを用いて運搬、設置を行い移築                |              | p.30  |  |
| 5         | TAL+ TAME            | 那覇空港                                  | 高台への移植                          | 平成26年                               | サンゴ                                       | 礫・転石の衝突を受け難い高台状の地形の上部に移植                                               | [37][38]     | p.31  |  |
| 6         |                      | 那覇空港                                  | 食害防止カゴ                          | 平成28年                               | サンゴ                                       | 魚類等の生物による食害を軽減するためのカゴを設置                                               | [39]         | p.32  |  |
| 7         |                      |                                       | ボルト、ロープ等による固縛                   | 令和2年                                | サンゴ                                       | 移植するサンゴを海底に固定した寸切りボルトやガイドロープと固縛<br>して移植                                | [40]         | -     |  |
| 8         | 8                    | 石西礁湖                                  | 砂礫質底への静置                        | 令和2年                                | サンゴ                                       |                                                                        |              |       |  |
| 9         |                      | ————————————————————————————————————— | 受精効率を高める近接配置                    | 令和2年                                | サンゴ                                       | を で を 他                                                                | [40][58]     | _     |  |
| 10        |                      | 小浜島                                   | リスキニング法                         | 平成30年~令和2年                          | サンゴ                                       | 成長が遅い種を対象に、同一群体由来のサンゴ小片をパッチ状に移                                         | [41]         | p.33  |  |
| 11        |                      | 那覇港                                   | エコブロック                          | 平成11年                               | サンゴ                                       | 種 固化前の消波ブロックにグレーチング等を押しつけて凹凸を形成                                        | [35]         | p.34  |  |
| 12        |                      | 那覇港                                   | 環境調和型ブロック                       | 平成15年                               | サンゴ・魚類・大型底生動物                             | 被覆・根固ブロックに対して古タイヤの設置やブロックのはつり等によ                                       | [35]         | -     |  |
| 13        |                      | 那覇港                                   | 直立ケーソン凹凸加工技術                    | 平成14年                               | サンゴ                                       | る凹部の形成<br>ケーソンの直立部に凹凸加工を施した様々なプレートを設置                                  | [35][44]     | -     |  |
| 14        |                      | 那覇港                                   | 生物共生型防波堤(人工タイドプール)におけ           | 平成24年~平成26年                         | サンゴ                                       | ケーソンに底面大踊高がD.L.+0.5m程度、水深U.6mの人工タイト<br>プールを設置、人エタイドプール底面に凹凸加工やグレーチングを設 | [42][43]     | p.35  |  |
| 15        |                      | 那覇港                                   | るサンゴ生息環境の改良と費用対効果の検討<br>嵩上げマウンド | 平成25年                               |                                           | 選サンゴの生息に適した光量とするためD.L7m以浅となるように防波                                      | [44][45]     | р.33  |  |
|           |                      | 那覇港                                   | グレーチング                          | 平成24年~平成26年                         | 堤のマウンドを嵩上げ                                |                                                                        | [44][45]     | p.36  |  |
| 16        |                      |                                       |                                 |                                     |                                           | 人工タイドブール底面にFRP製格子板(グレーチング)を設置<br>自然分解性樹脂またはステンレス(SUS304)で作成された格子状構     |              |       |  |
| <u>17</u> |                      | 那覇港                                   | コーラルネット サンゴ白化現象後の回復における人工構造物    | 平成23年~平成28年                         | サンゴ                                       | 造物を設置<br>人工構造物に生息するサンゴが周囲の天然礁よりも白化後の回復                                 | [46]         | p.37  |  |
| 18        |                      | 那覇港                                   | の有効性に関する研究                      | 平成元年~平成30年                          | サンゴ                                       | 東度が早いことを分析                                                             | [44]         | p.38  |  |
| <u>19</u> | 生物共生<br>型構造物         | 那覇港、平良港                               | 海水交換型防波堤                        | 平成24年~平成26年(那覇港)<br>平成9年~平成22年(平良港) | サンゴ・魚類                                    | 防波堤のケーソンに通水部を確保するための加工                                                 | [47]         | р.39  |  |
| 20        |                      | 那覇港                                   | 海水交換型防波堤                        | 昭和56年~昭和57年、昭和63年                   | サンゴ                                       | ケーソン間に消波ブロック堤を部分配置                                                     | [35][48]     | p.40  |  |
| 21        |                      | 那覇空港                                  | 通水路による閉鎖性海域の環境影響低減              | 平成29年                               | 浮遊性海域生物                                   | 連絡誘導路にボックスカルバートを設置し、通水路部を設置                                            |              | p.41  |  |
| 22        |                      | 那覇空港                                  | 自然石塊根固被覆ブロック                    | 平成29年                               | サンゴ・大型底生動物                                | 自然石を埋め込んだ被覆ブロックを設置                                                     | [50]         | -     |  |
| 23        |                      | 那覇空港                                  | 自然石護岸                           | 平成29年                               | サンゴ・大型底生動物 自然石を用いて緩傾斜護岸を設置                |                                                                        | [50]         | -     |  |
| 24        |                      | 那覇港、那覇空港                              | 凹凸加工消波ブロック                      | 平成25~28年、令和2年                       | サンゴ                                       | ゴ 消波ブロック表面に凹凸部を形成                                                      |              | -     |  |
| <u>25</u> |                      | 平良港                                   | 溝加工消波ブロック                       | 平成10年                               | サンゴ                                       | ゴ 消波ブロックの型枠に凸部を設けてブロック表面に溝を付加                                          |              | p.42  |  |
| 26        |                      | 平良港                                   | 植石被覆ブロック                        | 平成24年                               | サンゴ・魚類・大型底生動物                             | 自然石を埋め込んだ被覆ブロックを設置                                                     | [52]         | -     |  |
| 27        |                      | 平良港                                   | 凹凸加工根固ブロック                      | 平成10年                               | サンゴ・魚類・大型底生動物根固プロックに対して、建材プロックの設置等による凹凸部の |                                                                        | [35]         | -     |  |
| 28        |                      | 石垣港                                   | 緩傾斜護岸                           | 平成22年                               | サンゴ                                       | サンコの移植基盤・中間育成施設を設直するための平場を設直<br>周辺の人工構造物のサンゴ着生状況を基に、水深D.L-3~-4mに設<br>空 | [53]         | p.43  |  |
| <u>29</u> |                      | 那覇空港                                  | サンゴの着床具                         | 平成26年~平成29年                         | サンゴ                                       | 着床具を用いて稚サンゴを採苗し、育成後に実海域へ移植                                             | [39]         | p.44  |  |
| 30        | 養殖                   | 高志保地先                                 | 陸上養殖                            | 平成10年                               | サンゴ                                       | 陸上施設を用いたサンゴの生産                                                         | [54]         | -     |  |
| 31        |                      | 八重山漁協、前兼久漁協                           | 実海域養殖                           | 平成11年                               | サンゴ                                       | ひび建て式(海底に杭を打ち込み、杭上で養殖)によるサンゴの生産                                        | [55][56]     | -     |  |
| 32        |                      | 沖縄県各地                                 | 沖縄県の複合的なオニヒトデ対策                 | 平成24年~平成30年                         | サンゴ                                       | オニヒトデ対策大量要因に関する研究及び大量発生予測のためのモニタリング、実施調査                               | [57]         | -     |  |
| 33        |                      | 沖縄県各地                                 | サンゴ礁保全再生事業                      | 平成22~平成28年                          | サンゴ                                       | サンゴの種苗生産・中間育成・植付けを行い、今後も活用できる知見<br>や技術などを蓄積                            | [58]         | -     |  |
| 34        |                      | 恩納村恩納                                 | サンゴ再生プロジェクト                     | 平成16年~                              | サンゴ                                       | 養殖サンゴの植え付けによるサンゴ再生活動                                                   | [59]         | p.45  |  |
| 35        |                      | 阿嘉島                                   | 移植サンゴの大きさや移植時期に関する研究            | 平成19年                               | サンゴ                                       | 移植後のサンゴの生残率、産卵活動等の観察                                                   | [60]         | -     |  |
| <u>36</u> | その他                  | 陸上水槽実験、久米島                            | 遮光によるサンゴ白化現象の緩和効果の検証            | 平成30年                               | サンゴ                                       | サンゴの白化を防ぐ有効な遮光率を求める実験                                                  | [61]         | p.46  |  |
| <u>37</u> | COTIE                | 久米島                                   | 高水温耐性サンゴの種苗生産技術の開発              | 平成30年~                              | サンゴ                                       | 高水温耐性サンゴの選抜育種、DNAマーカー育種技術の開発・検証                                        | [62]         | p.47  |  |
| 38        |                      | 読谷村                                   | サンゴの色と高水温耐性に関する研究               | 平成28年~令和3年                          | サンゴ                                       | サンゴの色を規定する遺伝的要因が高水温耐性に与える影響につ<br>いて分析                                  | [54][63]     | p.48  |  |
| 39        |                      | 石垣島、阿嘉島                               | 電気防食                            | 平成21年                               | サンゴ                                       | 電気防食技術を応用し、サンゴ着生基盤表面に微弱電流を発生                                           | [64]         | p.49  |  |
| 40        |                      | 阿嘉島、久米島                               | 有性生殖によるサンゴ増殖技術の開発               | 平成18年~                              | サンゴ 有性生殖によるサンゴ種苗の生産                       |                                                                        |              | -     |  |
| 41        |                      | 石西礁湖、オーストラリア                          | 藻類除去試験                          | 令和4年(石西礁湖)<br>平成30年~令和元年(オーストラリア)   | サンゴ                                       | 藻類除去処理とサンゴ加入群体数に関する試験・解析                                               | [67][68][69] | p.50  |  |
| ※下線で      | 示された事                | L<br>例は本マニュアル適用節用                     | L<br>の周辺海域における導入実績等を踏まえて選定      |                                     | _t=_                                      | 1                                                                      |              |       |  |

- [35] 内閣府沖縄総合事務局開発建設部:"環境共生に関する技術を取りまとめた「技術カルテ」", 内閣府沖縄総合事務局HP, 平成29年(2017年), https://www.ogb.go.jp/kaiken/minato/005799(令和7年3月28日に利用). を加工して作成

- [40] 石西礁湖における航路整備技術検討委員会事務局: "第16回石西礁湖における航路整備技術検討委員会(資料-5)", 内閣府沖縄総合事務局石垣港湾事務所HP,令和4年(2022年), https://www.dc.ogb.go.jp/ishigakikou/route\_seki16.html
- [41] 水産庁漁港漁場整備部: 令和4年度厳しい環境条件下におけるサンゴ礁の面的保全・回復技術開発実証委託事業報告書. を加工して作成
- [42] Toko Tanaya, Nobuyuki Kinjo, Wataru Okada, Masato Yasuda, Tomohiro Kuwae: Improvement of the coral growth and cost-effectiveness of hybrid infrastructure by an innovative breakwater design in Naha Port, Okinawa, Japan, Coastal Engineering Journal, Vol.63, No.3, pp.248-262, 2021. を加工して作成
- [43] 棚谷灯子, 金城信之, 岡田亘, 安田将人, 桑江朝比呂: 生物共生型防波堤におけるサンゴ生育環境の改良と費用対効果, 令和4年度国土交通省国土技術研究会HP, 令和4年(2022年), https://www.mlit.go.jp/chosahokoku/r4giken (令和7年9月11日に利用). を加工して作成
- [44] Toko Tanaya, Shunpei Iwamura, Wataru Okada, Tomohiro Kuwae: Artificial structures can facilitate rapid coral recovery under climate change, Scientific reports, 15(1):9116, doi: 10.1038/s41598-025-93531-2, 2025. を加工して作成
- [45] 棚谷灯子,桑江朝比呂:人工構造物を用いた新たな生息場の創造によるサンゴ礁生態系の再生,港湾空港技術研究所報告, Vol.64, No.2, 2025. [46] 山木克則, 新保裕美, 田中昌宏:コーラルネットを用いた那覇港内におけるサンゴ群集の創生, 土木学会論文集B3(海洋開発), Vol.73, No.2, pp.1,875 - 1,880, 2017. を加工して作成
- [47] 棚谷灯子, 金城信之, 岩村俊平, 青山宗平, 長谷川巌, 鈴木高二朗, 桑江朝比呂: 防波堤におけるサンゴの着生に対するケーソン目地部の効果, 土木学会論文集B2(海岸工学), Vol.75, No.2, pp1\_1147 1\_1152, 2019. を加工して作成 [48] 吉見昌宏, 与那覇健次, 片岡真二, 山本秀一, 高橋由浩, 田村圭一: サンゴの人工構造物への着生状況-3, 海岸工学論文集, Vol.45, pp.1111 - 1115, 1998. を加工して作成
- [49] 内閣府沖縄総合事務局、国土交通省大阪航空局: 『那覇空港プロジェクト―那覇空港滑走路増設事業に係る環境影響評価準備書(評価書第二分冊)"。那覇空港プロジェクトHP、平成25年(2013年) https://www.do.opb.go.jp/kyoku/information/nahakuukou/14\_asess/asess\_l.html(令和7年3月28日に利用)。 を加工して作成
  [50] 内閣府沖縄総合事務局、国土交通省大阪航空局: 『那覇空港プロジェクト―令和4年度那覇空港滑走路増設事業に係る事後調査報告書(第6章)"。那覇空港プロジェクトHP、令和5年(2023年), https://www.do.opb.go.jp/Kyoku/information/nahakuukou/104djigochousahoukokusyo.html(令和7年3月28日に利用)。 を加工して作成
  [51] 石井正樹、前幸地紀和、大村旅、山本秀一、高橋由浩、田村圭一: 平良港におけるサンゴ礁群集に配慮した環境修復技術、海岸工学論文集、Vol.48, pp.1301 1305, 2001。を加工して作成
- [52] 内閣府沖縄総合事務局平良港湾事務所: 平成30年度平良港周辺環境調査業務報告書。を加工して作成
- [53] 国土交通省港湾局: "生物共生型港湾構造物の整備・維持管理に関するガイドライン"、国土交通省HP, 平成26年(2014年), https://www.mlit.go.jp/kowan/kowan\_tk6\_000019.html(令和7年3月28日に利用). を加工して作成
- [54] 金城浩二:民間企業によるサンゴ再生, 日本サンゴ礁学会誌, Vol.19, No.1, pp.129 134, 2017. [55] 環境省九州地方環境事務所 沖縄奄美自然環境事務所: "令和5年度石西礁湖サンゴ群集修復試験実施業務報告書", 環境省HP, 令和5年(2023年), https://kyushu.env.go.jp/okinawa/coremoc/report/sango1.html(令和7年3月28日に利用).
- [56] 比嘉義視, 新里宙也, 座安佑奈, 長田智史, 久保弘文:漁協によるサンゴ再生の取り組み~沖縄県恩納村での事例~:日本サンゴ礁学会誌, Vol.19, No.1, pp.119 128, 2017.
- [57] 岡地賢、小笠原敬、山川英治、北村誠、熊谷直喜、中富伸幸、山本修一、中嶋亮太、金城孝一、中村雅子、安田仁奈: 沖縄県の複合的なオニヒトデ対策、日本サンゴ礁学会誌、Vol.21, pp.91 110, 2019. を加工して作成 [58] 沖縄県: "サンゴ礁保全再生事業総括報告書"、サンゴ礁保全再生事業報告書HP、最終更新: 令和6年(2024年), https://www.pref.okinawajp/kurashikankyo/kankyo/1004621/1004633.html (令和7年9月9日に利用).
- [59] 環境省グッドライフアワード事務局: "受賞者紹介 第3回グッドライフアロード 環境大臣賞 最優秀賞 サンゴ南生ブロジェクト「チーム美々もサンゴ」"、環境省HPグッドライフアロード中のでは2015年)。 https://www.env.go.jp/policy/kihon\_keikaku/goodlifeaward/report201501-teamchurasango.html(令和7年5月12日に利用)。を加工して作成
- [60] Nami Okubo, Tatsuo Motokawa, Makoto Omori: When fragmented coral spawn? Effect of size and timing on survivorship and fecundity of fragmentation in Acropora formosa, Marine Biology, 151(1):353-363, 2007.
- [61] 水産庁漁港漁場整備部:平成30年度厳しい環境条件下におけるサンゴ礁の面的保全・回復技術開発実証委託事業報告書. を加工して作成 [62] 水産庁漁港漁場整備部: 令和5年度厳しい環境条件下におけるサンゴ礁の面的保全・回復技術開発実証委託事業報告書. を加工して作成
- [63] Noriyuki Satoh, Koji Kinjo, Kohei Shintaku, Daisuke Kezuka, Hiroo Ishimori, Atsushi Yokokura, Kazutaka Hagiwara, Kanako Hisata, Mayumi Kawamitsu, Koji Koizumi, Chuya Shinzato, Yuna Zayasu: Color morphs of the coral, Acropora tenuis show different responses to environmental stress and different expression profiles of fluorescent-protein genes, G3: Genes|Genomes|Genetics, Volume11, Issue2, jkab018, https://doi.org/10.1093/g3journal/jkab018, 2021. を加工して作成
- [64] 鯉渕幸生, 木原一禎, 山本悟, 近藤康文: 微弱電流がサンゴの着床や成長に及ぼす影響, 土木学会論文集B2(海岸工学), Vol.66, No.1, pp.1216 1220, 2010. を加工して作成
- [65] 水産庁漁港場整備部、"有性生殖によるサンゴ増殖の手引き -生育環境が厳しい沖ノ鳥島におけるサンゴ増殖-"、水産庁HP, 平成21年3月(2009年), https://www.jfa.maff.go.jp/j/seibi/sango\_tebiki, h21\_03.html(令和7年10月03日に利用)
- [66] 水産庁漁港場整備部: "改訂 有性生殖によるサンゴ増殖の手引き"、水産庁HP, 平成31年3月(2019年), https://www.jfa.maff.go.jp/j/seibi/sango\_tebiki.html(令和7年10月03日に利用). [67] 環境省: 令和3年度(繰越)石西礁湖サンゴ群集修復試験実施業務報告書. を加工して作成
- [68] 環境省: 令和5年度石西礁湖サンゴ群集修復試験実施業務報告書 を加工して作成
- [69] Hillary A. Smith, Dylan A. Brown, Chaitanya V. Arjunwadkar, Stella E. Fulton, Taylor Whitman, Bambang Hermanto, Elissa Mastroianni, Neil Mattocks, Adam K. Smith, Peter L. Harrison, Lisa Boström-Einarsson, Ian M. McLeod, David G. Bourne: Removal of macroalgae from degraded reefs enhances coral recruitment, Restoration Ecology, Volume30, Issue7, e13624, 2022.

| 事例名  | No. 1 嵩上げ移植            |
|------|------------------------|
| 目的   | 旅客船バースの整備で影響を受けるサンゴの避難 |
| 実施箇所 | 那覇港(那覇港泊ふ頭地区)          |
| 実施時期 | 施工時期:平成19年             |
|      | モニタリング時期:平成19年         |
|      |                        |

## 技術概要 【背景】

・旅客船バースの整備に伴い、影響を受けるサンゴを避難させることを目的と して、サンゴ移植を行った。

# 【結果等】

- ・移植は、ブロック及び移植床へそれぞれ行い、移植床には長径30~60 cmの 群体を対象として30群体を移植した。
- ・移植床への固定は、建材ブロックによって嵩上げしたワイヤーメッシュの上 に均等にサンゴを置き、結束バンドや針金等で群体の一部を固定した。
- ・移植6ヶ月後のモニタリングにおいても、移植床に移植したミドリイシ属、 ハマサンゴ属ともに良好な状態であった。

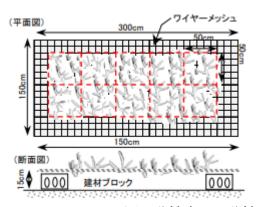





図 移植床への移植イメージ及び移植状況

# 表 移植サンゴの状況(移植6ヶ月後)

| 移植場所       | 群体<br>サイズ | 属•種名         | 移植<br>群体数 | 生残率 (%) | 活性状況 (%) |    | 破損率 (%) |    | 食害状況 |     | 平均成長量<br>(cm) |      | 移植成否 |    |
|------------|-----------|--------------|-----------|---------|----------|----|---------|----|------|-----|---------------|------|------|----|
| -90171     |           |              |           |         | 良好       | 不良 | 良好      | 不良 | 群体数  | %   | 長径            | 高さ   | 状態   | 成長 |
|            | 大         | ハナガササンゴ属     | 5         | 100     | 100      | 0  | 100     | 0  | 0    | 0   | 0.6           | 0.0  | 0    | 0  |
|            |           | ハマサンゴ属 (被覆状) | 2         | 100     | 100      | 0  | 100     | 0  | 0    | 0   | 0.0           | 1.3  | 0    | 0  |
|            |           | ハマサンゴ属 (塊状)  | 5         | 100     | 100      | 0  | 100     | 0  | 0    | 0   | 0.4           | 1.1  | 0    | 0  |
|            |           | ユビエダハマサンゴ    | 53        | 100     | 100      | 0  | 100     | 0  | 1    | -1  | 0.6           | 0.7  | 0    | 0  |
|            |           | ナガレハナサンゴ     | 5         | 100     | 100      | 0  | 100     | 0  | 0    | 0   | -6.3          | -1.8 | 0    | Δ  |
|            |           | チリメンハナヤサイサンゴ | 2         | 100     | 100      | 0  | 100     | 0  | 0    | 0   | 1.8           | 0.3  | 0    | 0  |
|            |           | ミドリイシ科       | 5         | 80      | 80       | 20 | 60      | 40 | 0    | 0   | -1.2          | -0.8 | 0    | 0  |
| ブロック       |           | ハナガササンゴ属     | 3         | 100     | 100      | 0  | 100     | 0  | 0    | 0   | 1.2           | 0.5  | 0    | 0  |
| 7099       |           | ハマサンゴ属 (被覆状) | 3         | 67      | 67       | 33 | 100     | 0  | 0    | 0   | 0 -1.5        | -1.2 | Δ    | Δ  |
|            |           | ハマサンゴ属 (塊状)  | 7         | 100     | 86       | 14 | 100     | 0  | 0    | 0   | -1.1          | 0.2  | 0    | 0  |
|            | 小サイズ      | ヤスリサンゴ       | 1         | 100     | 100      | 0  | 100     | 0  | 0    | 0   | 0.0           | 0.0  |      | 0  |
|            |           | シコロサンゴ属      | 2         | 100     | 100      | 0  | 100     | 0  | 0    | 0   | 0.8           | 0.5  | 0    | 0  |
|            |           | リュウモンサンゴ属    | 5         | 100     | 100      | 0  | 100     | 0  | 2    | - 1 | 0.3           | 0.1  | 0    | 0  |
|            |           | ウミバラ属        | 11        | 100     | 100      | 0  | 100     | 0  | 0    | 0   | 0.7           | 0.5  | 0    | 0  |
|            |           | キクメイシ科       | 4         | 100     | 100      | 0  | 100     | 0  | 0    | 0   | 0.0           | 0.0  | 0    | 0  |
|            |           | ナガレハナサンゴ     | 29        | 100     | 100      | 0  | 100     | 0  | 1    | - 1 | 1.0           | 0.8  | 0    | 0  |
| <b>平</b> 位 | 植床        | ミドリイシ属       | 10        | 100     | 100      | 0  | 100     | 0  | 6    | 1   | -             | 1.3  | 0    | 0  |
| 19         | 但体        | ハマサンゴ属       | 20        | 100     | 100      | 0  | 100     | 0  | 3    | 1   | -             | 0.7  | 0    | 0  |

青枠内が移植床の結果に該当

注) 成長量のマイナスは物理的破損によるものである

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[35]内閣府沖縄総合事務局開発建設部:"環境共生に関する技術を取りまとめた「技術カルテ」", 内閣府沖縄 総合事務局 HP, 平成 29 年(2017 年), https://www.ogb.go.jp/kaiken/minato/005799(令和 7 年 3 月 28 日に利用).

| 事例名  | No.2 水中ボンドによる固定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的   | 改変区域内に生息するサンゴの移植                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 実施箇所 | 那覇空港                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 実施時期 | 平成 26 年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 技術概要 | 【背景】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | ・空港滑走路増設のために改変する必要のある区域に生息するサンゴ類の一部                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | を、代償措置として近辺の類似環境へ移植した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 【結果等】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | ・小型サンゴとして、ミドリイシ属を中心としたサンゴ(19,506群体)、アオ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | サンゴ等(17, 176 群体)、ショウガサンゴ等(242 群体)を新滑走路西側及び北                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 側、波の上うみそら公園へ移植した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | ・サンゴ移植は、サンゴを根元部分から回収し、カゴに入れて移植先へ運搬し                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | た。移植先において、固定範囲表面の付着藻類等をブラシ等で除去し、水中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | ボンドを用いてサンゴ類を固定した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | ・モニタリングの結果、ミドリイシでは大型台風の影響により生残率 8%(移植                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 42~48ヶ月後)の地点もみられたが、その他の移植サンゴは大きな減少傾向                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | もなく成育しており、大規模移植としては特にアオサンゴの生残率が64~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 79%(移植42~48ヶ月後)と比較的高い水準で推移している。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | ①サンゴ類の採取 全球取サンゴをカゴへ収容 ③カゴの引き上げ ④船上水槽への収容                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | ©ボンプによる集水交換                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | ②光衛目地柱(水中ボンド) ③ブラシによる基質医の掃除 ①サンゴ類の固定作業 ②間定したサンゴ類の例                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 図 サンゴ類の移植手順                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | To 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 500 (683 6 gar) 500 (683 6 gar |
|      | 5 2000 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | ## 10.00   ## 10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00    |
|      | 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 1005   1006   1006   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007   1007      |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[36] 内閣府沖縄総合事務局開発建設部: "那覇空港プロジェクト―那覇空港滑走路増設事業サンゴ類移植等環境保全措置報告会(資料4)", 那覇空港プロジェクト HP, 平成27年(2015年), https://www.dc.ogb.go.jp/kyoku/information/nahakuukou/houkokukai01.html(令和7年4月1日に利用).

図 移植サンゴの群体数及び生存被度(アオサンゴ)

[37] 内閣府沖縄総合事務局開発建設部,国土交通省大阪航空局: "那覇空港プロジェクト―第 10 回那覇空港滑走路増設環境監視会(資料 5-1)",那覇空港プロジェクト HP,平成 30 年(2018 年),https://www.dc.ogb.go.jp/Kyoku/information/nahakuukou/kankyoukanshiiinkai10.html(令和7年4月1日に利用).

| ±  r:    tr | N O DY # 11 \ \ \ S O TO H                                                                                                                                    |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 事例名         | No.3 群集サンゴの移植                                                                                                                                                 |
| 目的          | 改変区域内に生息するサンゴの移植                                                                                                                                              |
|             | 那覇空港                                                                                                                                                          |
| 2 4772      | 平成 26 年                                                                                                                                                       |
| 技術概要        | 【背景】 ・空港滑走路増設のために改変する必要のある区域に生息するサンゴ類の一部  な、保健世界トレスに辺の類似環境。発病した                                                                                               |
|             | を、代償措置として近辺の類似環境へ移植した。<br>【結果等】                                                                                                                               |
|             | ・ユビエダハマサンゴ等の枝状サンゴ群集 1042.1m²を、新滑走路西側リーフ                                                                                                                       |
|             | 斜面に自生する既存サンゴの隙間の裸地に、流出防止ネットを用いて移植した。                                                                                                                          |
|             | ・採取したサンゴ類を移植カゴに入れたのち、移植カゴを船体の海面下へ取り<br>付けて曳航して移植地点へ移送した。                                                                                                      |
|             | ・平成 29 年度のモニタリング調査では、移植 48 ヶ月後の生残面積は 750m <sup>2</sup>                                                                                                        |
|             | (生残率 72%) であった。                                                                                                                                               |
|             | ①サンゴ頭の採取 ②採取サンゴを移植カゴへ収容 ③移植カゴへ収容されたサンゴ頭 ④移植カゴの引き上げ                                                                                                            |
|             | ⑤彩植カゴを船体へ取り付け ⑥船首部の取り付け ⑦曳航状況 ⑧曳航中のサンゴ類の状況                                                                                                                    |
|             | ②移植場所への移植力の降下 ①移植地点への移植力ゴの移動 ①底板を引き抜き、サンゴ類を<br>カゴから下ろす                                                                                                        |
|             | 図 枝状サンゴ群集の移植方法                                                                                                                                                |
|             | B-1   20   100   B-2   20   100   B-2   20   20   20   20   20   20   20                                                                                      |
|             | 12   12   12   13   14   14   15   15   15   15   15   15                                                                                                     |
|             | 20   4   20   4   20   4   20   4   20   4   20   4   20   4   4   20   4   4   20   4   4   20   4   4   20   4   4   20   4   4   4   4   4   4   4   4   4 |
|             | 100 B-4 会風19号<br>80 B-5 会風19号<br>20 80 B-5 会風19号<br>16                                                                                                        |
|             | 日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本                                                                                                                        |
|             | 図 枝状サンゴ群集の生存被度と種類数                                                                                                                                            |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

- [36] 内閣府沖縄総合事務局開発建設部: "那覇空港プロジェクト―那覇空港滑走路増設事業サンゴ類移植等環境保全措置報告会(資料4)", 那覇空港プロジェクト HP, 平成27年(2015年), https://www.dc.ogb.go.jp/kyoku/information/nahakuukou/houkokukai01.html(令和7年4月1日に利用).
- [37] 内閣府沖縄総合事務局開発建設部,国土交通省大阪航空局: "那覇空港プロジェクト―第 10 回那覇空港滑走路増設環境監視会(資料 5-1)",那覇空港プロジェクト HP,平成 30 年(2018 年),https://www.dc.ogb.go.jp/Kyoku/information/nahakuukou/kankyoukanshiiinkai10.html(令和7年4月1日に利用).

| 事例名  | No. 4 大型サンゴ移築                                                                                                                                                                                                                                                                                                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的   | 改変区域内に生息するサンゴの移築                                                                                                                                                                                                                                                                                                      |
| 実施箇所 | 那覇空港                                                                                                                                                                                                                                                                                                                  |
| 実施時期 | 平成 26 年                                                                                                                                                                                                                                                                                                               |
| 技術概要 | 【背景】 ・空港滑走路増設のために改変する必要のある区域に生息するサンゴ類の一部を、代償措置として近辺の類似環境へ移築した。 【結果等】 ・大型塊状ハマサンゴ (37 群体)を新滑走路西側の海域へ移築した。 ・採取時、切断部の長径が 1m 以下の群体は人力工法、1m~1.5m 未満の群体は水中バックホウ、1.5m 以上の群体は水中ワイヤーソーで作業を行った。 ・採取後、台船で移築先へ運搬し、整形した海底にハマサンゴを移築した。 ・平成29 年度モニタリング調査では、3 群体で生存部の割合が 10%まで低下した。その他の群体は台風、白化の影響を受け一時的に生存部が減少したが、その後は大きな変化がなく成育している。 |
|      | <ul> <li>人力工法(小規模サンゴ採取) 2群体 切断部の長径が1m以下の群体は、人力での作業を基本としました。         <ul> <li>・機械工法(大規模サンゴ採取) 35群体 切断部の長径が1m~1.5m未満の群体は水中パックホウ、</li></ul></li></ul>                                                                                                                                                                    |
|      | ①水中ワイヤーソーで弾取(切断) 水中ワイヤーソーで弾取(切断) 水中ワイヤーソー 水中ワイヤーソー ()合船で移築先へ二次連搬 ()海底の整形状況 () 一部で移築先へ二次連搬                                                                                                                                                                                                                             |
|      | 1月1日 日本                                                                                                                                                                                                                                                                           |
|      | 図 大型サンゴの採取・移築方法                                                                                                                                                                                                                                                                                                       |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

- [36] 内閣府沖縄総合事務局開発建設部: "那覇空港プロジェクト―那覇空港滑走路増設事業サンゴ類移植等環境保全措置報告会(資料4)", 那覇空港プロジェクト HP, 平成27年(2015年), https://www.dc.ogb.go.jp/kyoku/information/nahakuukou/houkokukai01.html(令和7年4月1日に利用).
- [37] 内閣府沖縄総合事務局開発建設部,国土交通省大阪航空局: "那覇空港プロジェクト―第 10 回那覇空港滑走路増設環境監視会(資料 5-1)",那覇空港プロジェクト HP,平成 30 年(2018 年),https://www.dc.ogb.go.jp/Kyoku/information/nahakuukou/kankyoukanshiiinkai10.html(令和7年4月1日に利用).

| 事例名  | No.5 高台への移植                                                                 |
|------|-----------------------------------------------------------------------------|
| 目的   | 台風時の移植サンゴへの影響の低減                                                            |
| 実施箇所 | 那覇空港                                                                        |
| 実施時期 | 平成 26 年                                                                     |
| 技術概要 | 【背景】                                                                        |
|      | ・台風による物理的撹乱が移植サンゴに与えた影響の要因を移植先の地形等か                                         |
|      | ら分析するための調査を行った。                                                             |
|      | 【結果等】                                                                       |
|      | ・調査は台風来襲前までに移植した約10,500群体の1割が調査対象となるよ                                       |
|      | う、計36地点で行った。調査の結果、被災前の推定群体数の36地点の平均                                         |
|      | は 29.50±13.62 群体、被災率の平均は 29.90±17.46%であった。サンゴの                              |
|      | 主な被災要因は、波浪によって攪乱された直径数十cmから数mの転石や砂礫                                         |
|      | が移植サンゴに衝突したことであると考えられた。<br>・幾何補正した垂直写真の画像分析により、枠の面積に対する砂礫等の侵入範              |
|      | ・幾何補正した垂直与兵の画像分析により、枠の面積に対する砂礫寺の侵入   囲である低地の面積の割合を求めた結果、砂礫等が侵入しやすい低地の占有     |
|      | 一面である低地の面積の割占を求めた福米、砂燥等が侵入してすぐ低地の占有<br>  率が高いほど、被災率が高いことが分かった。また、低地の占有率が低い場 |
|      | 所は凸地形となっており、被災率が低かった。                                                       |
|      | ・これらの分析結果を踏まえ、被災後の移植作業では、高台に移植した。その                                         |
|      | 結果、その後の台風による移植サンゴへの大きな影響は見られず、移設先と                                          |
|      | して適切であると考えられた。                                                              |
|      | 100                                                                         |
|      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                       |
|      | 数 60 - • • • • • • • • • • • • • • • • • •                                  |
|      | 6                                                                           |
|      | T 40 1                                                                      |
|      | <sup>20</sup> N=36 N=36                                                     |
|      | 0 20 40 60 80 100                                                           |
|      | コドラート枠内の低地の占有率(%)                                                           |
|      | 図 移植サンゴの被災率と低地の占有率の関係図                                                      |
|      | サンゴ 砂礫・転石の動き 砂礫 転石                                                          |
|      | 数十四程度                                                                       |
|      | a) 低地:被災が多かった地形                                                             |
|      |                                                                             |
|      | 1~2m 程度                                                                     |
|      | <b>b)</b> 凸地: 被災が少なかった地形                                                    |
|      | 3~5m 程度                                                                     |
|      | 3 <sup>-3</sup> Jill (EDX                                                   |
|      | c) 高台:被災後の移植先とした地形                                                          |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[38] 前里尚, 椎原康友, 岩村俊平, 片山理恵, 高橋由浩:環境保全措置として実施した群体サンゴ移植事例の技術的レビュー, 土木学会論文集 B3 (海洋開発), Vol. 72, No. 2, pp. I\_1035 - I\_1039, 2016.

図 移植先の地形の断面イメージ図

| 事例名  | No.6 食害防止カゴ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的   | 魚類によるサンゴの食害防止                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 実施箇所 | 那覇空港                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 実施時期 | 施工時期:平成28年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | モニタリング: 平成 28 年~平成 29 年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 技術概要 | 【背景】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | ・魚類による食害を防止するために、移植したサンゴ全てに食害防止カゴを設                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | 置した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 【結果等】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | ・1 カゴ内のサンゴは同じ種類になるように寄せ植えを行い、食害防止カゴは                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 計 96 個設置した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | ・カゴ設置の有無でその後の生残率を比較したところ、カゴを設置した移植サ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | ンゴの方が生残率は高く、一定の効果があったと考えられた。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | THE RESERVE OF THE PARTY OF THE |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 図 食害防止カゴの設置(左)と移植状況(右)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | → カゴ有 <del> カ</del> ガ 無                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | € 80 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 掛 60 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | # 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 6月 7月 9月 12月 7月                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 移植直後 1カ月後 3カ月後 6カ月後 12カ月後                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 平成29年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 図 食害防止カゴ(左)と食害防止カゴの有無による生残率変化(右)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

<sup>[39]</sup>内閣府沖縄総合事務局,国土交通省大阪航空局: "那覇空港プロジェクト―令和元年度那覇空港滑走路増設事業に係る事後調査報告書(第4章)",那覇空港プロジェクト HP,令和3年(2021年),https://www.dc.ogb.go.jp/kyoku/information/nahakuukou/r01d\_jigochousahoukokusyo.html(令和7年4月1日に利用).

| 事例名  | No. 10 リスキニング法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的   | 成長速度の遅いハマサンゴ等に対する成長促進技術の検証                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 実施箇所 | 小浜島                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 実施時期 | 平成 30 年~令和 2 年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 技術概要 | 【背景】 ・リスキニングとは、成長の遅いハマサンゴ等の塊状サンゴ類を小片化し、人工基盤等にパッチ状に貼り付けて成長・融合させることで、サンゴ群体を早期に再生する技術である。 【結果等】 ・切断厚や貼付間隔を変えた実験結果によると、小片の生残率は移植3年後ではハマサンゴ属・トゲキクメイシ属のいずれも80%以上であった。 ・移植3年後の成長率は、切断厚についてはハマサンゴ属は1.5cm、トゲキクメイシ属は0.5cmの条件で最も高かった。一方、貼付間隔については、ハマサンゴ属は正確な成長率が算出できなかったものの、互いの小片が融合するほど高い成長率が確認された。トゲキクメイシ属は貼付間隔3cmの条件で最も高かった。 ・移植3年後の融合率は、切断厚についてはハマサンゴ属・トゲキクメイシ属のいずれも0cmの条件で最も高く、貼付間隔についてはハマサンゴ属で4cm、トゲキクメイシ属で3cmの条件で最も高かった。 ・付着物に関する実験結果によると、ハマサンゴ属の生残率は付着物を除去した条件で87%、除去しなかった条件で53%となり、明確な差がみられた。一方、トゲキクメイシ属については付着物除去の有無にかかわらず生残率は80%以上であった。 ・貼付方向に関する実験結果によると、ハマサンゴ属は垂直方向よりも水平方向に貼り付けた方が成長率は高かった。一方、トゲキクメイシ属は垂直方向方が成長率は高かった。融合率については、ハマサンゴ属・トゲキクメイシ属のいずれも垂直方向に貼り付けた方が高かった。 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

図 移植3年後の小片生残・成長状況の例(海域実験)

出典)「技術概要」における結果等は以下の資料を元に加工して作成。

[41]水産庁漁港漁場整備部: 令和4年度厳しい環境条件下におけるサンゴ礁の面的保全・回復技術開発実証委託事業報告書.

| 事例名  | No. 11 エコブロック                                                                                                                                                            |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的   | サンゴの加入・成長の促進                                                                                                                                                             |
| 実施箇所 | 那覇港(那覇防波堤(港外側))                                                                                                                                                          |
| 実施時期 | 施工時期:平成11年                                                                                                                                                               |
|      | モニタリング: 平成 11 年~平成 19 年(10 年間)                                                                                                                                           |
| 技術概要 | 【背景】 ・固化前の消波ブロックにグレーチングなどを押しつけて凹凸加工を施し、サンゴの加入・成長の場を創出した。 【結果等】 ・凹凸加工 10mm と 5mm で、ブロック導入後 3~4 年目までのサンゴの加入を著しく増加させる効果があることが分かった。 ・サンゴが着床した消波ブロック周辺には魚が集まり、蝟集効果があることが分かった。 |
|      | ●凹凸の深さ ・粗度大:10mm(グレーチング等仕上げ) ・粗度中:5mm(レーキ等仕上げ) ・粗度小:2mm(ハケ目等仕上げ) ・粗度小:2mm(ハケ目等仕上げ)                                                                                       |
|      | エコブロックの概観(ドロス, 40t) ※粗度:凹凸の深さ                                                                                                                                            |
|      | 5cm     5cm     5cm       無加工(対照区)     粗度小(2mm)     粗度中(5mm)     粗度大(10mm)                                                                                               |
|      | 2007.8<br>1999 年(直後)<br>D.L2m<br>凹凸加工 10mm<br>単凸加工 10mm<br>平体数 19. 被度 75%<br>図 凹凸加工ブロックにおけるサンゴの成育状況 (例)                                                                  |
|      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                    |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[35]内閣府沖縄総合事務局開発建設部: "環境共生に関する技術を取りまとめた「技術カルテ」", 内閣府沖縄総合事務局 HP, 平成 29 年(2017 年), https://www.ogb.go.jp/kaiken/minato/005799 (令和 7 年 3 月 28 日に利用).

| 事例名                                     | No. 14 生物共生型防波堤(人工タイドプール)におけるサンゴ生息環境の改                                            |
|-----------------------------------------|-----------------------------------------------------------------------------------|
| チャンプロ                                   | 良と費用対効果の検討                                                                        |
| <br>目的                                  | グレーインフラとグリーンインフラを組み合わせたハイブリッド型インフラ                                                |
| ПΗЭ                                     | (IGGI) の費用対効果を試算し、費用対効果の高い手法を検討                                                   |
| 実施箇所                                    |                                                                                   |
| 実施時期                                    | 生物共生型防波堤の施工時期:平成24年~平成26年                                                         |
| 技術概要                                    | 【背景】                                                                              |
| 201111111111111111111111111111111111111 | ・サンゴの着生に配慮した生物共生型防波堤(Pro-environment                                              |
|                                         | breakwater(PB)) には、サンゴの生息に適した浅場面積の拡大を目的にマウ                                        |
|                                         | ンドが嵩上げされ、低潮時には潮溜まりが出現する人工タイドプール                                                   |
|                                         | (Artificial tide pool(ATP))が整備されている。ATP の天端高は、LWL を                               |
|                                         | 基準として LWL+1.0m (PB <sub>shallow</sub> ) と LWL+0.7m (PB <sub>deep</sub> ) の2種類がある。 |
|                                         | 【結果等】                                                                             |
|                                         | ・サンゴ面積や整備費用より、費用対サンゴ着生効果は通常防波堤に比べ、生                                               |
|                                         | 物共生型防波堤の効果が 1.04~1.11 倍高く、PB <sub>deep</sub> が最も効果が高かった。                          |
|                                         | ・通常防波堤 (Control) に比べ、PB <sub>deep</sub> はサンゴ面積(m <sup>2</sup> )が 1.22 倍増加した。      |
|                                         | 増加分の 42%は ATP によるサンゴ面積の増加であった。                                                    |
|                                         | ・PB <sub>shallow</sub> 、PB <sub>deep</sub> の防波堤の整備費用の内訳は、Control に比べてそれぞれ防波       |
|                                         | 堤延長 1m あたり 2,226 千円、2,610 千円高くなったものの、その増加分の                                       |
|                                         | 多くがマウンドの嵩上げに伴う費用であった。一方、ATP 設置に係る費用は                                              |
|                                         | 383 千円とマウンド嵩上げ費用に比べて低く、ATP の整備に伴い結果的に上<br>部工の体積等が減少するため、正味 86 千円で整備可能と試算された。      |
|                                         | ・ATP はサンゴ被度 16%の基盤増加を 698.8cm²/千円で実現可能であり、移植等                                     |
|                                         | によるサンゴ生息場の再生の費用対効果(608.3cm²/千円)に匹敵すると試                                            |
|                                         | 算された。先行研究ではサンゴ群体の移植密度が 4~5 群体/m² と想定されて                                           |
|                                         | いるのに対し、ATPでのサンゴ群体の密度が同等以上であることを考慮する                                               |
|                                         | と ATP 設置はサンゴ生息場の再生手段として費用対効果が高いとしている。                                             |
|                                         | ・既設のControl、PB <sub>shallow</sub> 、PB <sub>deep</sub> に加え、仮想的な断面として、天端高           |
|                                         | LWL+0.7mの ATP のみを設けた Control+ATP の 4 パターンの断面を想定する                                 |
|                                         | と、予算が 25,406 千円~25,492 千円では Control と Control+ATP の組み合                            |
|                                         | わせ、予算が 25,492 千円~28,016 千円では Control+ATP と PB <sub>deep</sub> の組み合                |
|                                         | わせでサンゴ面積が最大化すると試算されている。                                                           |
|                                         | 生物共生型防波堤 (a)                                                                      |
| 1                                       | 港外、港内                                                                             |

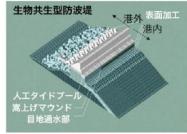



図 生物共生型防波堤の アイソメトリック図



図 人工タイドプール(ATP)の写真

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[42]Toko Tanaya, Nobuyuki Kinjo, Wataru Okada, Masato Yasuda, Tomohiro Kuwae: Improvement of the coral growth and cost-effectiveness of hybrid infrastructure by an innovative breakwater design in Naha Port, Okinawa, Japan, Coastal Engineering Journal, Vol.63, No.3, pp. 248-262, 2021.

[43] 棚谷灯子,金城信之,岡田亘,安田将人,桑江朝比呂:生物共生型防波堤におけるサンゴ生育環境の改良と費用対効果,令和4年度国土交通省国土技術研究会 HP,令和4年(2022年),https://www.mlit.go.jp/chosahokoku/r4giken(令和7年9月11日に利用).

| 事例名  | No. 16 グレーチング                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的   | 人工タイドプール内に FRP 製の格子板(グレーチング)を設置し、サンゴ類                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | の着生・成長促進及び魚類・大型底生動物の蝟集                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 実施箇所 | 那覇港(浦添第一防波堤東端延長 120m 区間)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 実施時期 | 平成 24 年~平成 26 年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 技術概要 | 【背景】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | ・人工タイドプール (Artificial tide pool(ATP)) の天端高は、干潮位より                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 1.0m (LWL+1.0m) または 0.7m (LWL+0.7m) 高くなるよう設計されている。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | ATP の内底中央部の表面処理は、(1) 10mm または 30mm の溝加工、(2) FRP 製                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | グレーチング (格子サイズ 40mm、厚さ 8cm)、(3) 無加工の 3 種類である。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | 【結果等】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | ・LWL+0.7mのATPでは、加工区(溝加工区とグレーチング区)での総サンゴ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 被度は平均約 18%で、特にミドリイシ属の被度と群体数が無加工区に比べて                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 顕著に高くなった。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | ・同じ底面の加工部と無加工部を比較すると加工部は無加工部よりもサンゴの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 総被度が高かった。アナサンゴモドキ属、コモンサンゴ属、ハマサンゴ属、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | ハナヤサイサンゴ属も、加工部の方が被度が高い例が見られた。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | ・ATP 内のサンゴ群体数の総数は、グレーチング区の加工部または LWL+0.7m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | の溝加工区の加工部では、無加工部よりも多かった。ミドリイシ属におい<br>てはすべてのサイトで加工部の方が多く、アナサンゴモドキ属、ハマサン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 「はりゃくのりイトで加工部の力が多く、ケケリンコモドキ属、ハマリン   ゴ属、ハナヤサイサンゴ属、コモンサンゴ属でも一部のケースで同様の傾                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 一個、ハブドッイッシュ属、コモンッシュ属でも一部のグラスで同様の順     向であった。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | ・サンゴ群体のサイズは、グレーチング区での増加が顕著であった。全体とし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | て、加工部では平均群体サイズが無加工部よりも増加したが、ミドリイシー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | 属、Faviidae 科、ハマサンゴ属、ハナヤサイサンゴ属の平均群体サイズが                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 無加工部を上回ったのはグレーチング区のみであった。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | ・グレーチング区は無加工区より魚類の個体数が多く、小型のスズメダイ科                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | (オキナワスズメダイ等) が多く確認された。その他、大型底生動物(漁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | 獲対象種であるシャコガイ類等含む)も確認された <sup>※[45]</sup> 。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | ・これらの結果から ATP における表面加工(特にグレーチング)はサンゴ類の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 着生や成長促進及び魚類の蝟集効果があると考えられた。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | FRP grating 10-mm grooves 30-mm grooves A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 10 cm |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 図 人工タイドプール (ATP) で確認                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 図 人工タイドプール (ATP) で確認 された生物 A: 小型の魚類 (スズメダイ科) の例                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | A:小型の魚類(スズメダイ科)の例                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | Processed Unprocessed Processed Unprocessed Processed Unprocessed Processed Unprocessed B:大型底生動物(シャコガイ類)の 図 加工区・無加工区の (地球ない地域など)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | 例(港湾空港技術研究所提供)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

出典)「技術概要」における背景や結果等の説明や図は、以下の資料[44]を元に加工して作成(※ただし、結果等の一部は資料[45]を引用)。

サンゴ被度の比較

- [44] Toko Tanaya, Shunpei Iwamura, Wataru Okada, Tomohiro Kuwae: Artificial structures can facilitate rapid coral recovery under climate change, Scientific reports, 15(1):9116, doi: 10.1038/s41598-025-93531-2, 2025.
- [45]棚谷灯子,桑江朝比呂:人工構造物を用いた新たな生息場の創造によるサンゴ礁生態系の再生,港湾空港技術研究所報告,Vol.64,No.2,2025.

| 市周夕  | N. 17 7. 51.7 l                                                                                                                                             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 事例名  | No. 17 コーラルネット                                                                                                                                              |
| 目的   | 効果的なサンゴ群集の再生手法                                                                                                                                              |
| 実施箇所 |                                                                                                                                                             |
| 実施時期 |                                                                                                                                                             |
| 技術概要 | 【背景】                                                                                                                                                        |
|      | ・那覇港港内側でのサンゴ群集の創生を目的に、格子状構造の人工基盤「コー                                                                                                                         |
|      | ラルネット」を設置した。                                                                                                                                                |
|      | ・コーラルネット及びコンクリート製ブロック上で成育するサンゴ群集の生残                                                                                                                         |
|      | 及び被度について5年間の長期モニタリングを実施し、環境要因との関係に                                                                                                                          |
|      | ついて分析した。                                                                                                                                                    |
|      | 【結果等】                                                                                                                                                       |
|      | ・コーラルネットに着生したサンゴ群集は、ミドリイシ属、ハナヤサイサンゴ                                                                                                                         |
|      | 属が優占すると共に被度は最大45%となった。                                                                                                                                      |
|      | ・コーラルネット上で見られたサンゴは太枝状、テーブル状のミドリイシ属サ<br>ンゴなどで、波高が高いまたは、潮通しの良い環境に適すると考えられる。                                                                                   |
|      | ・ブロック上ではマット状に生育する海藻類に細粒分が堆積した影響によりサ                                                                                                                         |
|      | ・ ノロックエ (は * ツ下状に生育 y る                                                                                                                                     |
|      | ンコ列生の有生阻害が認められた。                                                                                                                                            |
|      | <sup>50</sup> 7                                                                                                                                             |
|      | 0 2012 ■ 2013 ■ 2014 図 2015 ■ 2016                                                                                                                          |
|      |                                                                                                                                                             |
|      | <u></u>                                                                                                                                                     |
|      | (%)<br>数<br>型<br>で<br>で<br>で<br>で<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の                                                          |
|      |                                                                                                                                                             |
|      |                                                                                                                                                             |
|      | 0 -5m -7m -5m -7m -5m -7m -5m -7m -3m -5m -7m -3m -5m -7m -3m -5m -7m                                                                                       |
|      | -5m   -7m   -5m   -7m   -5m   -7m   -3m   -5m   -7m   -3m   -5m   -7m   -3m   -5m   -7m   -7m   -7m   -7m   -7m   -7m   -7m   ガロック   Lo (10mm)   Hi (100mm) |
|      | コーラルネット コーラルネット                                                                                                                                             |
|      | St.A St.B                                                                                                                                                   |
|      | 図 ブロック及びコーラルネット上のサンゴ被度の推移                                                                                                                                   |
|      |                                                                                                                                                             |
|      |                                                                                                                                                             |
|      |                                                                                                                                                             |
|      |                                                                                                                                                             |
|      |                                                                                                                                                             |
|      |                                                                                                                                                             |
|      | (6)2014                                                                                                                                                     |
|      |                                                                                                                                                             |
|      |                                                                                                                                                             |
|      |                                                                                                                                                             |
|      |                                                                                                                                                             |
|      | (a)2015                                                                                                                                                     |
|      | Acr:ミドリイシ属 Poc:ハナヤサイサンゴ属 Mil:アナサンゴモドキ属                                                                                                                      |
|      | 図 サンゴ群体の成長の一例                                                                                                                                               |
|      |                                                                                                                                                             |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[46]山木克則,新保裕美,田中昌宏:コーラルネットを用いた那覇港内におけるサンゴ群集の創生,土木学会論文集 B3 (海洋開発), Vol. 73, No. 2, pp. I\_875 - I\_880, 2017.

| 事例名  | No. 18 サンゴ白化現象後の回復における人工構造物の有効性に関する研究                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的   | 人工構造物が気候変動下でサンゴの迅速な回復を促進できるかについて評価                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 実施箇所 | 那覇港                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 実施時期 | 平成元年~平成 30 年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 技術概要 | ・那覇港の人工構造物及び周辺の天然礁において、29 年間(平成元年~平成30 年)、延べ約33,000 件のサンゴ被度に関する現地観測データを比較した。 [結果等] ・平成10 年の大規模白化後、人工構造物と天然礁のサンゴ被度は低下した。その後、サンゴ被度は人工構造物において6年以内にほぼ白化前の水準まで回復した。一方、天然礁ではほとんど回復していない。平成10 年以降の全期間において、サンゴ被度は天然礁よりも人工構造物の方が高い。人工構造物上のサンゴ群集を初期段階から長期的にモニタリングされた事例はほとんどない。今回の解析で、人工構造物上のサンゴが数十年に渡って定着・維持されることや、人工構造物は建設後数年で周辺の天然礁と同程度の被度となることが明らかとなった。・大規模白化前後の種組成の変化を解析したところ、人工構造物では白化前後ともミドリイシ属及びハナヤサイザンゴ属であった。一方、天然礁においては、白化前はミドリイシ風が主体であったものの、白化後はFaviidae科、不の他造礁サンゴ類及びサンゴ以外の底質に変化していた。・人工構造物のサンゴ群集はミドリイシ属が優におしている一方で、Faviidae科、ハマサンゴ属、その他造礁サンゴ類の被度は周辺の天然礁よりも低く、天然礁と異なるサンゴ群集の組成であった。ミドリイシ属は浅い水深を好み、成長が早く、一斉産卵によって急速に生息地を増やすことができる。白化後に那覇港の人工構造物のサンゴ被度が急速に回復したのは、ミドリイシ属のもつこうした特性によるものでを急速に回復したのは、ミドリイシ属のもつこうした特性によるものではないことに留意する必要がある。 |

図 A: 平成元年から平成30年までの那覇港の防波堤及び周囲の天然礁における造礁サンゴ類の被度の経時的変化(黒線は平成10年の白化現象) B:消波ブロックに着生したサンゴ(港湾空港技術研究所提供)

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[44] Toko Tanaya, Shunpei Iwamura, Wataru Okada, Tomohiro Kuwae: Artificial structures can facilitate rapid coral recovery under climate change, Scientific reports, 15(1):9116, doi:10.1038/s41598-025-93531-2, 2025.

| 事例名              | No. 19 海水交換型防波堤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的               | 港内外の海水交換の促進(副次的効果:サンゴの成育の促進)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 実施箇所             | ①那覇港(浦添第一防波堤東端延長 120m 区間)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | ②平良港(下崎西防波堤I区間・下崎北第二防波堤)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 実施時期             | 施工時期:①浦添第一防波堤 平成24年~平成26年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | ②下崎西防波堤 平成9年~平成18年、下崎北第二防波堤 平成17年~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | 平成 22 年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | (関連調査のモニタリング:①平成29年~平成30年、②平成10年~平成                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| L-L- 시낭 Lmt ==== | 27 年・平成 29 年~平成 30 年)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 技術概要             | 【背景】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | ・那覇港や平良港では、港内外の海水交換を促進のため通水型ケーソンやケー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | ソンの隙間配列が整備されている。<br>【結果等】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | 【福木寺】<br><海水交換の促進>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | ・目地幅 1m 程度まで、目地幅が広いほど港内側への海水の噴き出し距離が長                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | くなる傾向が見られ、特に那覇港の浦添第一防波堤では、沖波入射角が約                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | 30°、目地幅 5-90cm の範囲において、その傾向が顕著であった。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | <サンゴの加入・成長の促進効果>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | ・那覇港の場合、ケーソン目地部は、目地から離れた直立部よりもサンゴの総                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | 被度が高く、特にミドリイシ属やハナヤサイサンゴ属等の着生を高める効果                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | がみられ、サンゴ総被度は目地幅 1m 前後で最大化することが確認された。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | ・平良港の場合、目地幅を 1m 程度設けてもサンゴの着生に対する効果が見ら                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | れなかった。通水部の計画や設計に当たっては波浪条件や防波堤の延伸方向                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | など流速に影響を与える要因を考慮する必要があると考えられた。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | 250 y = 2.07x + 14.32 の 那覇港 (c) ミドリイシ属 カー 78 カ |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | では                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | ±10 50 / グ 沖南防波堤 5 ● 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  | y = 7.66x + 2.96 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | 0 50 100 150 沖南防波堤 0 5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | 目地からの距離[m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | 図 日地幅(D. L. = 0. 5回) と 図 日地が500距離                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 80 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 概 。 。 。 。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | ‡ 20 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  | 0 50 100 150 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | 目地幅 [cm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  | 図 目地幅とサンゴ被度の関係 図 目地部のサンゴ分布状況の例                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

出典)「技術概要」における結果等は以下の資料を元に加工して作成。

[47]棚谷灯子,金城信之,岩村俊平,青山宗平,長谷川巌,鈴木高二朗,桑江朝比呂:防波堤におけるサンゴの着生に対するケーソン目地部の効果,土木学会論文集 B2 (海岸工学), Vol. 75, No. 2, pp. I\_1147 - I\_1152, 2019.

| 事例名  | No. 20 海水交換型防波堤                                  |
|------|--------------------------------------------------|
| 目的   | 防波堤の通水部におけるサンゴの成育状況と流況との関係を検討・把握し、               |
|      | サンゴの成育に与える通水部の効果を確認                              |
| 実施箇所 | 那覇港(浦添第一防波堤)                                     |
| 実施時期 | 施工時期:昭和56年~昭和57年、昭和63年                           |
| 技術概要 | 【背景】                                             |
|      | ・那覇港の浦添第一防波堤には、ケーソン間に幅 54m にわたって消波ブロック           |
|      | が部分配置されているほか、ケーソン間の幅が 0.2m に設定された箇所が存            |
|      | 在する。                                             |
|      | 【結果等】                                            |
|      | ・通水部の幅が 54m の広い区間を「区間①」とし、通水部中央から 9m、27m、        |
|      | 45m 地点で調査を実施した。また、通水部の幅が 0.2m と狭い区間を「区間          |
|      | ②」とし、通水部中央から 0.5m、4.5m、9m の地点で同様に調査を実施し          |
|      | た。調査対象水深はいずれの区間も D.L1m、-3m、-5m とし、コドラート内         |
|      | (縦 50cm×横 100cm)のサンゴ被度、最大高(壁面からの垂直方向の最大          |
|      | 値)を測定した。                                         |
|      | ・サンゴ被度の平均値は、区間①の通水部からの距離 9m で 33.3%、27m で        |
|      | 21.7%、45m で 30%であった。区間②では通水部からの距離が 0.5m で        |
|      | 43.3%、4.5m で 36.7%、9m で 20.0%であった。区間①では通水部からの距離  |
|      | とサンゴ被度の関係は明確でない。                                 |
|      | ・最大高は区間①の通水部からの距離 9m で 15.7cm、27m で 18.7cm、45m で |
|      | 6.7cm であった。区間②では通水部からの距離が 0.5m で 14.3cm、4.5m で   |
|      | 14.3cm、9m で 6cm であり、いずれの区間も通水部付近において着生してい        |

ンゴの比率が高くなるためであった。
・立体的なサンゴは、平面的なサンゴと比較して現存量が多く、景観に優れ、 空隙が多いため魚類や他の生物の生息場として高い機能を有していると考え られる。このような高い機能を有する立体的なサンゴの増殖手法として海水 交換の促進が有効であることが示唆された。

るサンゴの高さが大きい傾向がみられた。すなわち、通水部周辺においては 散房花状や樹枝状の立体的な群体形のサンゴの比率が高く、通水部から離れ るにしたがってこれらサンゴの比率が低くなり、代わりに被覆状や塊状のサ

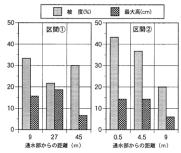


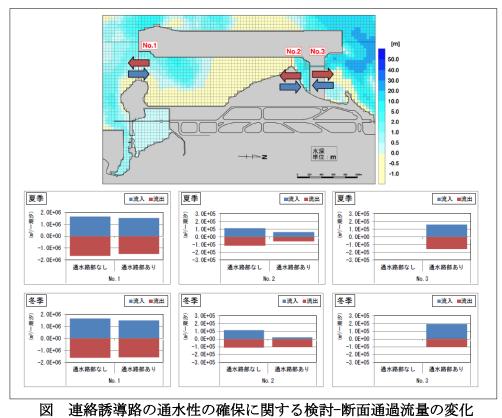

図 サンゴの成育状況と 通水部からの距離



図 通水部 (区間②) の分布状況<sup>※[35]</sup>

出典)「技術概要」における結果等は以下の資料[48]を元に加工して作成(※ただし、図の一部は資料[35]を引用)。

[35]内閣府沖縄総合事務局開発建設部:"環境共生に関する技術を取りまとめた「技術カルテ」", 内閣府沖縄総合事務局 HP, 平成 29 年(2017 年), https://www.ogb.go.jp/kaiken/minato/005799 (令和7年3月28日に利用).


[48]吉見昌宏,与那覇健次,片岡真二,山本秀一,高橋由浩,田村圭一:サンゴの人工構造物への着生状況-3,海岸工学論文集,Vol.45,pp.1111 - 1115,1998.

| 事例名  | No. 21 通水路による閉鎖性海域の環境影響低減             |
|------|---------------------------------------|
| 目的   | 閉鎖的海域への通水性確保、水質・底質・生物環境への環境影響軽減       |
| 実施箇所 | 那覇空港(第二滑走路連絡誘導路)                      |
| 実施時期 | 施工時期:平成29年                            |
|      | モニタリング調査:                             |
|      | (工事前) 平成 25 年(埋立区域存在時) 平成 30 年~令和 5 年 |
| 技術概要 | [밥통]                                  |

・那覇空港の第二滑走路増設に伴い、発生する閉鎖性海域の通水性確保を目的 に導入した通水路部について、滑走路存在前後の底質・生物環境に関する事 後調査結果が報告されている。

# 【結果等】

・閉鎖性海域の環境影響の軽減については、事業計画時に複数案が検討されて おり、採用された通水路部の設置案では、通水部を設けない構造案と比較し て、通水性の向上が予測された。それに伴い、夏季の水温上昇の緩和や、シ ルト・粘土分の堆積の緩和がシミュレーションにより予測された。



出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

- [49] 内閣府沖縄総合事務局、国土交通省大阪航空局:"那覇空港プロジェクト―那覇空港滑走路増設事業に 係る環境影響評価準備書(評価書第二分冊)". 那覇空港プロジェクトHP, 平成25年(2013年), https://www.dc.ogb.go.jp/kyoku/information/nahakuukou/14\_asess/asess\_1.html(令和7年3月28 日に利用).
- [50] 内閣府沖縄総合事務局, 国土交通省大阪航空局: "那覇空港プロジェクト―令和4年度那覇空港滑走路 増設事業に係る事後調査報告書(第6章)", 那覇空港プロジェクトHP, 令和5年(2023年), https://www.dc.ogb.go.jp/Kyoku/information/nahakuukou/r04d\_jigochousahoukokusyo.html(令和 7 年3月28日に利用).

| 事例名    | No. 25 溝加工消波ブロック                                                                                              |
|--------|---------------------------------------------------------------------------------------------------------------|
| 目的     | サンゴの加入・成長の促進                                                                                                  |
| 実施箇所   | 平良港(下崎西防波堤(港外側))                                                                                              |
| 実施時期   | 施工時期:平成10年                                                                                                    |
|        | モニタリング: 平成 10 年~平成 19 年(10 年間)                                                                                |
| 技術概要   | 【背景】                                                                                                          |
|        | ・消波ブロックの型枠に凸部分を設けてブロックに溝加工を施し、サンゴの加                                                                           |
|        | 入・成長の場を創出した。                                                                                                  |
|        | 【結果等】                                                                                                         |
|        | ・モニタリング調査の結果、無加工区に比べて加工区でややサンゴ群体数が多                                                                           |
|        | い傾向にあり、サンゴの加入を促す効果がうかがえた。被度はブロック導入                                                                            |
|        | から9年経過後も10%未満であり、加工区と無加工区の差違は小さく、被                                                                            |
|        | 度の増加に対する効果は明確ではない。<br>・溝加工区部の角の部分に比較的多くのサンゴが着生することが分かってい                                                      |
|        | る。                                                                                                            |
|        | S S                                                                                                           |
|        | 単位:mm<br>h 2620                                                                                               |
|        |                                                                                                               |
|        |                                                                                                               |
|        | t 型:12.5t                                                                                                     |
|        | 2009 10                                                                                                       |
|        | 2008.10<br>※数字はサンゴの着生部分                                                                                       |
|        | 9 7 5 6                                                                                                       |
|        | 10 8                                                                                                          |
|        | Im Im                                                                                                         |
|        |                                                                                                               |
|        |                                                                                                               |
|        | 1998 年(設置直後) 2007 年(9 年後)                                                                                     |
|        | 図 溝加工ブロックにおけるサンゴの成育状況(例)                                                                                      |
|        | D.L1m                                                                                                         |
|        | で<br>15   加工区 □ 無加工区 □ 無加工区 □ 15                                                                              |
|        | (%) 10<br>(%) 10<br>(%) 10<br>(%) 10<br>(%) 10<br>(%) 10<br>(%) 10<br>(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) |
|        |                                                                                                               |
|        |                                                                                                               |
|        | 15 D.L3m 20 D.L3m                                                                                             |
|        | 15 0 15 15 €                                                                                                  |
|        | 大<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・                                            |
|        | * 0                                                                                                           |
|        | 0 1 2 3 4 7 9 1 2 3 4 7 9 1 1998年以降の経過年数(年) 1998年以降の経過年数(年) 1998年以降の経過年数(年)                                   |
|        | 1998年以降の経過年数(年) 1998年以降の経過年数(年) 図 群体数・被度の経年変化の例                                                               |
| 出曲)「技術 |                                                                                                               |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[35]内閣府沖縄総合事務局開発建設部:"環境共生に関する技術を取りまとめた「技術カルテ」", 内閣府沖縄総合事務局 HP, 平成 29 年(2017 年), https://www.ogb.go.jp/kaiken/minato/005799 (令和7年3月28日に利用).

| 事例名            | No. 28 緩傾斜護岸                       |
|----------------|------------------------------------|
| 目的             | サンゴ類の生息・生育環境の創出、移植サンゴの中間育成としての仮置き場 |
| 実施箇所           | 石垣港                                |
| 実施時期           | 施工時期:平成22年                         |
|                | モニタリング:平成22年~                      |
| TT VIC TILL TE |                                    |

# 技術概要【背景】

- ・石垣港において、生物共生護岸として護岸根固石の上面にサンゴ基質を配置 した事例が報告されている。
- ・護岸の洗堀対策として根固マウンドを設計し、マウンド上にはサンゴの移植 基盤・中間育成施設を設置するための平面部を設けた。平面部は、サンゴに 影響する強光や水温を考慮して、D.L.-3.0~-4.0mに設け、航路からのシル ト分対策の為、海底面より高く設計された。

#### 【結果等】

・平成22年に水深別にサンゴの移植が実施され、移植2年後の生残率は、D.L.-4.0m区間で約59%、D.L.-3.0m区間で約70%であった。

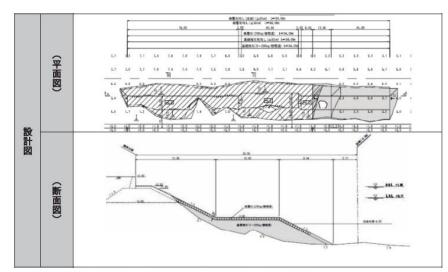







写真 移植サンゴの様子 (左; D.L.-4.0m 区間、右; D.L.-3.0m 区間)

図 生物共生護岸の構造と移植されたサンゴの状況

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[53] 国土交通省港湾局: "生物共生型港湾構造物の整備・維持管理に関するガイドライン", 国土交通省 HP, 平成 26 年(2014 年), https://www.mlit.go.jp/kowan/kowan\_tk6\_000019.html (令和 7 年 3 月 28 日に利用).

| 事例名  | No. 29 サンゴの着床具                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 目的   | サンゴの着床具を用いた採苗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 実施箇所 | 那覇空港                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 実施時期 | 平成 26 年~平成 29 年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 技術概要 | 【背景】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | ・事前に供給源となる親サンゴの分布や特性から地点を選定、踏査を行い、着                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 床具設置予定箇所を選定し、着床具による採苗を行った。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 【結果等】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | ・過年度調査でサンゴの着床が多い地点に絞ったことや、産卵期後半に産卵し                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | たミドリイシ属の幼生加入を対象として着床具の採苗地点での設置期間を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 長くしたことによって、採苗率は増加した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | ・種類別にみると、着床の多くを占めるミドリイシ科やハナヤサイサンゴ科の<br>* ***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | 着床群体数は年によって増減した。<br>・当該海域における着床量の変動の主な要因は、ミドリイシ属の産卵期におけ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | る気象海象(産卵期の強風や大雨)、白化現象、採苗地点への長期設置によ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | るハナヤサイサンゴ科の着床増加である。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | ・主な供給源となるサンゴ類被度 10%以上の比較的高被度の分布面積につい                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | ては、本試験期間中に大きな変化はみられなかった。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 海域採苗(着床具の設置) 中間育成 サンプリング                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 設置 3 ヵ月後 設置 1.5 年後 移植                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 設置6カ月後                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 図 着床具による採苗から移植までの流れ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | // / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | Ton ton the state of the state |
|      | 上57x4℃21"科 上57x4℃21"科 上57x4℃21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | fon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 17/1/2-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 図 着床が確認されたサンゴ類                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[39] 内閣府沖縄総合事務局,国土交通省大阪航空局: "那覇空港プロジェクト―令和元年度那覇空港滑走路増設事業に係る事後調査報告書(第4章)", 那覇空港プロジェクト HP, 令和3年(2021年), https://www.dc.ogb.go.jp/kyoku/information/nahakuukou/r01d\_jigochousahoukokusyo.html(令和7年4月1日に利用).

| 事例名  | No. 34 サンゴ再生プロジェクト   |
|------|----------------------|
| 目的   | 養殖サンゴの植え付けによるサンゴ再生活動 |
| 実施箇所 | 恩納村恩納                |
| 実施時期 | 平成 16 年~             |

# 技術概要【背景】

- ・海水温上昇で大きなダメージを受けたサンゴの保全を目的に、サンゴの植え 付け活動を継続的に実施している。
- ・年に4回ほどのペースでサンゴの植え付けプログラム(イベント)を実施、 参加者の手で植え付け用の台に固定した苗を作り、サンゴの消えてしまった 海域に移植している他、サンゴの生態などについても学習している。
- ・植え付け用の台には、自由なメッセージ等を書き込み、「自分の手でサンゴ 再生に協力した」という実感が得られるように配慮している。

#### 【結果等】

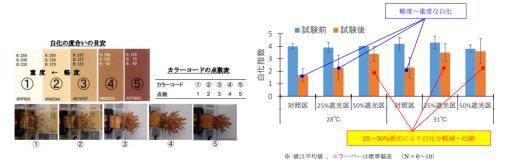
・2004年(平成16年)から始まったサンゴの植え付け活動では、2015年(平成27年)までの12年間で計5,574本のサンゴ植え付けを行っている。





図 サンゴ植え付け活動の状況




図 サンゴについての学習

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[59]環境省グッドライフアワード事務局: "受賞者紹介 第 3 回グッドライフアワード 環境大臣賞 最優秀賞 サンゴ再生プロジェクト「チーム美らサンゴ」", 環境省 HP グッドライフアワード, 平成 27 年(2015 年), https://www.env.go.jp/policy/kihon\_keikaku/goodlifeaward/report201501-teamchurasango.html (令 和 7 年 5 月 12 日に利用).

| 事例名  | No. 36 遮光によるサンゴ白化現象の緩和効果の検証                                               |
|------|---------------------------------------------------------------------------|
| 目的   | 高水温下においてサンゴ白化現象の緩和となる遮光                                                   |
| 実施箇所 | 陸上水槽実験、久米島                                                                |
| 実施時期 | 平成 30 年                                                                   |
| 技術概要 | ・水槽実験を行い、高水温下で飼育し、白化を防ぐ有効な遮光率を把握した。<br>また、水槽実験結果に基づいた海域実験も実施された。<br>【結果等】 |
|      | ・ウスエダミドリイシを、水温条件は 31℃と 28℃、遮光条件は 50%、25%、                                 |

- ・ウスエダミドリイシを、水温条件は 31  $\mathbb{C}$   $\mathbb{C$
- ・光条件は12L/12D(明期:5-17時、暗期:17-5時)、光量は生残性の高い日平均光量の約300µmo1/m²/sとした。
- ・25~50%程度の遮光によりサンゴの白化を軽減、抑制する効果が確認された。
- ・海域実験では、目合い 4、12、25mm の遮光ネットを設置する方法や、水深を D. L.-4m から D. L.-12m に変える実験が実施された。実施年度はサンゴ白化現象を引き起こす高水温が発生しなかったため、遮光による白化防止効果の実証にはつながっていないものの、このような措置を施すことで、どの程度水中光量子が減少するかが確認された。



# 図 カラーチャートによる白化度合いと試験前後の白化指数(水槽実験)




図 目合いを変えた遮光ネットの遮光率の違いとサンゴの成育状況(海域実験)

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[61] 水産庁漁港漁場整備部:平成30年度厳しい環境条件下におけるサンゴ礁の面的保全・回復技術開発実証 委託事業報告書.

| 事例名  | No. 37 高水温耐性サンゴの種苗生産技術の開発                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 目的   | 高水温耐性サンゴの種苗生産に必要な品種改良法の開発・検証                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 実施箇所 | 久米島                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| 実施時期 | 平成 30 年~                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| 技術概要 | 【背景】 ・ウスエダミドリイシ(Acropora tenuis)を対象として、高水温耐性サンゴの<br>選抜育種及び遺伝情報を利用した品種改良法(DNA マーカー育種)に関する技<br>術開発を進めている。                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|      | 【結果等】 ・令和5年度までに高水温耐性サンゴの選抜育種の技術開発は完了した。大まかな流れは以下の通りである。 1)親サンゴより得られた卵と精子を用いて有性生殖法により稚サンゴを生産2)生産した稚サンゴを約1ヶ月齢で、水温31.5℃において約2ヶ月間飼育することにより、高い高水温耐性を持つ稚サンゴを選抜3)選抜後は、常温にて4歳齢まで飼育 ・令和2年度までに高水温耐性サンゴに関与している可能性の高いDNAマーカーの候補領域が判明している。現在、この領域を対象としたPCR用プライマーの開発とその検証が続けられている。 ・上記技術とあわせて、高水温耐性サンゴの形質が次世代へ遺伝的継承がされているかについても検証が行われている。                                                                         |  |  |  |  |  |  |  |  |
|      | 様の採取 を                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|      | (C)高水温耐性が判別している親群体を用いて、高耐性・低耐性・サンゴに特有の遺伝的変異の探索  ・ DNAを抽出 → 全ゲノム解析(全DNA解語)・高温耐性に関与している遺伝的変異の特定(DNAマーカーの開発) ・ 高~低耐性の親由来の卵と精子を様々な組み合わせで掛け合わせて種苗生産(例:高耐性の卵×高耐性の精子・低耐性の卵×低耐性の精子・低耐性の卵×低耐性の精子)・稚サンゴを高水温暴露し、各組み合せの生残率の比較およびDNA解析  ・ 耐性が次世代に引き継がれるか検証  (B)高水温耐性が判別している群体を用いて、高耐性・低耐性・低耐性・低耐性の変異の特定(DNAマーカーの開発) ・ 高温耐性・で関・大のスーカーの開発)・高温耐性・サンゴを簡易的な方法で判定する方法を開発  ・ 高本に耐性・低耐性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ |  |  |  |  |  |  |  |  |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[62]水産庁漁港漁場整備部: 令和5年度厳しい環境条件下におけるサンゴ礁の面的保全・回復技術開発実証 委託事業報告書.

図 高水温耐性サンゴの選抜及び DNA マーカー開発までの流れ

| 事例名  | No. 38  サンゴの色と高水温耐性に関する研究                     |
|------|-----------------------------------------------|
| 目的   | サンゴの色を規定する遺伝的要因が高水温耐性に与える影響について分析             |
| 実施箇所 | 読谷村                                           |
| 実施時期 | 平成 28 年~令和 3 年                                |
| 技術概要 | 【背景】                                          |
|      | ・沖縄ではウスエダミドリイシ(Acropora tenuis)は茶色(NO型、NB型)、緑 |
|      | 方 (go Fill gp Fill)                           |

色(GO型、GB型)、紫色(P型)の3種類が確認されている。

・読谷村の私設水族館(有限会社 海の種)では、これら 3 色のウスエダミド リイシを育成・移植している。

### 【結果等】

- ・平成29年夏季の白化調査の結果、茶色及び紫色のサンゴで白化現象が発生し た。NO型では7~8月にかけて総面積の半分以上が白化した。その後、全体の 10~15%は白化後も回復せずに死滅した。NB型は7~8月の白化割合はNO型 より少なかったものの、多くの群体がその後回復せずに死滅した。P型は8月 下旬に総面積の約30%が白化、その後、総面積の約20%が死滅した。一方、緑 色では白化が見られなかった(GO型で総面積のうち数%が死滅していたのは 白化以外の理由で死滅)。
- ・各色のサンゴの共生藻 (Symbiodiniaceae) の系統を確認したところ、いずれ も Clade-C 系統の共生藻であった。したがって、茶色及び紫色のサンゴの白 化は共生藻の系統の違いによるものではないと示唆された。
- ・屋外水槽条件下で実施された蛍光タンパク質及び非蛍光色素タンパク質の遺 伝子発現プロファイルでは、季節によってこれらタンパク質の発現レベルが 変化することや、特に白化の少なかった緑色のサンゴは夏季の間 GFP (緑色蛍 光タンパク質)の発現が高いレベルで維持されていることが分かった。 これらの結果は、高水温耐性が遺伝的要因で修飾されており、その結果とし てウスエダミドリイシの色の多様化が生じていることを示唆している。



図 様々な色をもつウスエダミドリイシ

C: 茶色(NO型)、C': NO型の枝の先端(オレンジ色)

D: 茶色(NB型)、D': NB型の枝の先端(青色)

E:緑色(GO型)、E':GO型の枝の先端(オレンジ色)

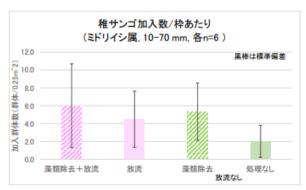
F:緑色(GB型)、F':GB型の枝の先端(青色)

G:紫色(P型)、G':P型の枝の先端

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[63] Noriyuki Satoh, Koji Kinjo, Kohei Shintaku, Daisuke Kezuka, Hiroo Ishimori, Atsushi Yokokura, Kazutaka Hagiwara, Kanako Hisata, Mayumi Kawamitsu, Koji Koizumi, Chuya Shinzato, Yuna Zayasu: Color morphs of the coral, Acropora tenuis, show different responses to environmental stress and different expression profiles of fluorescent-protein genes, 63: Genes Genomes Genetics, Volume 11, Issue 2, jkab 018, https://doi.org/10.1093/g3journal/jkab018, 2021.

| 事例名  | No. 39 電気防食                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 目的   | 微弱電流によるサンゴの成長促進効果の定量化                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| 実施箇所 | 石垣島、阿嘉島                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 実施時期 | 平成 21 年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 技術概要 | <ul> <li>【背景】</li> <li>・電流がサンゴの幼生の着生数、骨格成長、光合成に与える影響について検証するため、現地及び室内で様々な実験を実施し、電場がサンゴに与える影響について考察した。</li> <li>【結果等】</li> <li>・海水中で電流が流れることによって析出する電着物質は、サンゴ幼生の着生数によい影響をもたらし、またその残存率に電場が関係することがわかった。骨格成長と光合成についても電気の有用性が示された。</li> <li>・同時に電場がサンゴに与える影響が、サンゴの種類はもちろん、石灰化や光合成をはじめ、着床や成長などの生活史によっても異なり、単に強い電場に曝せば良いというようなものではないことが明らかになった。</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|      | 180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   18 |  |  |  |  |  |  |  |
|      | 図 石垣島での電着基盤への 図 各電場の範囲において有<br>電流密度 (mA/m²) ごとの 意な成長率増大を示した<br>着床数 (5月) と着床後の 群体の割合<br>生残数の時間変化                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|      | IP (石灰化速度)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|      | 図 日中の石灰化・光合成量 図 夜間の石灰化・光合成量<br>の関係 の関係                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |


出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[64] 鯉渕幸生,木原一禎,山本悟,近藤康文:微弱電流がサンゴの着床や成長に及ぼす影響,土木学会論文集 B2 (海岸工学), Vol. 66, No. 1, pp. 1216 - 1220, 2010.

| 事例名  | No. 41 藻類除去試験                            |
|------|------------------------------------------|
| 目的   | 藻類除去処理とサンゴ加入群体数に関する試験・解析                 |
| 実施箇所 | ①石西礁湖                                    |
|      | ②Great Barrier Reaf; Magnetic 島(オーストラリア) |
| 実施時期 | ①令和4年                                    |
|      | ②平成30年~令和元年                              |
| 技術概要 | 【背景】                                     |
|      | ・サンゴ幼生の加入促進をする目的で、ホンダワラ類や被覆性海藻類が繁茂す      |
|      | る地点において、スクレーパーや金ブラシ等を用いた除去道具を用いて藻類       |
|      | を除去した。                                   |

# 【結果等】

- ・一部にナイロンメッシュ  $(30\sim100\,\mu\,\text{m})$  製の放流ネットをかぶせ、ネット内 に幼生を放流したのち、3日後にネットを撤去した。
- ・1年半後にモニタリングを行い、1枠あたりのサンゴ加入数を調査した。
- ・藻類除去後に加入した可能性が高いサイズ (10~70mm 程度) のミドリイシ属 を対象として、各処理区(対照区を含む)間の多重比較を行ったところ、い ずれの試験区でも有意な差はみられなかった(Steel-Dwass 検定)。
- ・ミドリイシ属の枠あたり加入群体数では、藻類除去+幼生放流区が最も多く 次いで藻類除去区、幼生放流区の順であり、処理なし(対照区)が最も少な かった。
- ・藻類除去のみの区でも加入数が比較的多かったことから天然加入も比較的に 多かったと推察された。
- ・オーストラリアにおいても、25m<sup>2</sup>に12区画(うち6区画は藻類除去区、6区 画は対照区)を設定し、藻類除去とサンゴ加入数の関係について調査されて いる。報告によれば、藻類を除去した区画では対照区に比べ、サンゴ加入数 が3倍に増加していたとしている※[69]。



注) Steel-Dwass 法による多重検定で有意な差はなし

1 年半後の地点別・処理区別1枠あたりのサンゴ加入数

出典)「技術概要」における背景や結果等の説明や図は、以下の資料[67][68]を元に加工して作成(※ただ し、結果等の一部は資料[69]を引用)。

- [67]環境省:令和3年度(繰越)石西礁湖サンゴ群集修復試験実施業務報告書.
- [68]環境省:令和5年度石西礁湖サンゴ群集修復試験実施業務報告書.
- [69] Hillary A. Smith, Dylan A. Brown, Chaitanya V. Arjunwadkar, Stella E. Fulton, Taylor Whitman, Bambang Hermanto, Elissa Mastroianni, Neil Mattocks, Adam K. Smith, Peter L. Harrison, Lisa Boström-Einarsson, Ian M. McLeod, David G. Bourne: Removal of macroalgae from degraded reefs enhances coral recruitment, Restoration Ecology, Volume30, Issue7, e13624, 2022.

# 1-4. カサノリ・ホソエガサ

カサノリ・ホソエガサの保全・再生に関する既存事例の一覧表を表 1-4に示す。

移植については、浦添ふ頭地区における実証的な試みが報告されている。人工基質を活用した着生実験としては、那覇空港においてポリプロピレン製ロープを用いた事例があり、カサノリ類の着生が確認されている。陸上栽培に関しては、カサノリ・ホソエガサを対象に小規模な実験が実施されており、ホソエガサを用いた実験では母藻投入から8日後に配偶子嚢、18日後に発芽体が観察されている。一方、カサノリを用いた実験では配偶子放出が確認されておらず、引き続き技術的な検討が求められる。

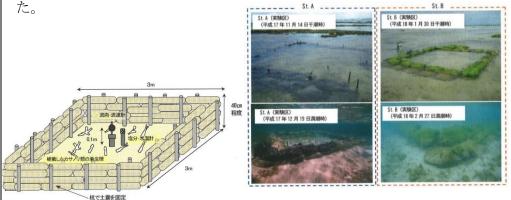
# 表 1-4 カサノリ・ホソエガサの保全・再生に関する既存事例

| No. <sup>*</sup> | 区分   | 実施場所等    | 事例名                        | 時期          | 対象    | 仕様·方法等                  | 出典       | 掲載ページ |
|------------------|------|----------|----------------------------|-------------|-------|-------------------------|----------|-------|
| 1                | 移植   | 浦添市空寿崎地先 | カサノリ・ホソエガサの実海域<br>植栽実験     | 平成16年~平成18年 | カサノリ類 | 実海域での植栽                 | [70]     | p.53  |
| 2                | 人工着生 | 瀬長島      | カサノリ類の生育基盤比較実験             | 平成26年~平成28年 | カサノリ  | 人工着生基盤の設置実験             | [71]     | -     |
| 3                | 基盤   | 瀬長島      | カサノリ類の人工着生基盤実験             | 平成29年~平成31年 | カサノリ  | 人工着生基盤の設置実験             | [71]     | p.54  |
| 4                | 陸上栽培 | 陸上水槽実験   | カサノリ・ホソエガサの水槽内<br>環境条件管理実験 | 平成15年~平成17年 | カサノリ類 | 陸上水槽による、長期間に<br>わたる維持保存 | [70][72] | p.55  |

<sup>※</sup>下線で示された事例は本マニュアル適用範囲の周辺海域における導入実績等を踏まえて選定し、次ページ以降に事例の概略を掲載した。

#### 引用文献

- [70] 那覇港管理組合: 平成17年度那覇港海域環境保全計画調査業務委託報告書. を加工して作成
- [71] 内閣府沖縄総合事務局,国土交通省大阪航空局: "那覇空港プロジェクト—第18回那覇空港滑走路増設環境監視委員会(参考資料1)", 那覇空港プロジェクトHP, 令和5年(2023年), https://www.dc.ogb.go.jp/kyoku/information/nahakuukou/kankyoukanshiiinkai18.html(令和7年3月28日に利用). を加工して作成
- [72] 那覇港管理組合:平成15年度那覇港海域環境保全計画調査業務委託報告書. を加工して作成


| 事例名  | No.1 カサノリ・ホソエガサの実海域植栽実験 |  |  |  |  |
|------|-------------------------|--|--|--|--|
| 目的   | 実海域における植栽種苗の生育条件の把握     |  |  |  |  |
| 実施箇所 | 浦添市空寿崎地先                |  |  |  |  |
| 実施時期 | 平成 16 年~平成 18 年         |  |  |  |  |
| 技術概要 | 【书書】                    |  |  |  |  |

# 技術概要 |

・浦添ふ頭地区において周囲を築堤した実験区と築堤なしの対照区を設置し、実 海域における植栽実験が実施された。

# 【結果等】

- ・カサノリ・ホソエガサは下げ潮、上げ潮に伴う比較的穏やかな潮流(おおむね流 速 0~10cm/s)の中で良好に生育することが確認された。一方、荒天時に強い流 れが発生する箇所ではカサノリ・ホソエガサの生育は良好ではなかった。
- ・カサノリは人工種苗生産には至ってないが、実海域での種付けは可能であるこ とが分かった。
- ・実海域への植栽手法としては、カサノリでは着生礫及び実海域での種付け後の 礫、ホソエガサはこれに加えて人工種苗生産した礫を導入できることが分かっ



実海域植栽実験のイメージ図と実施状況写真 図

#### 表 実験結果

| CL    | ×   | 流況                                                           |      | 速(cm/s) | 生育状況                                                              |
|-------|-----|--------------------------------------------------------------|------|---------|-------------------------------------------------------------------|
| St. 🗵 | N N |                                                              |      | 荒天時     | 生育1人元                                                             |
| St. A | 実験区 | ・平常時:上げ潮·下げ潮に伴う潮<br>流(主な流速0~5cm/s)                           | 3. 3 | 8. 7    | <ul><li>・多くの藻体が確認され、主にカサ形成藻体の状態であった。</li><li>・礫の残存率:44%</li></ul> |
|       | 対照区 | ・平常時:上げ潮・下げ潮に伴う潮流(主な流速0~10cm/s)が実験区より強い。<br>・荒天時:他実験区より流れが強い | 6. 7 | 14. 4   | ・当該種以外の海藻が繁茂し、当<br>該種の密度は低く、生長は良好で<br>なかった。<br>・礫の残存率:28%         |
| St. B | 実験区 | ・平常時:上げ潮·下げ潮に伴う潮<br>流(主な流速0~5cm/s)                           | 2. 2 | 5. 1    | ・多くの藻体が確認され、主にカ<br>サ形成藻体の状態であった。<br>・礫の残存率:43%                    |
|       | 対照区 | ・平常時:上げ潮·下げ潮に伴う潮流(主な流速0~10cm/s)が実験区より強い。                     | 6. 2 | 7. 3    | ・多くの藻体が確認され、主に力<br>サ形成藻体や成熟藻体の状態で<br>あった。<br>・礫の残存率:26%           |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[70] 那覇港管理組合:平成17年度那覇港海域環境保全計画調査業務委託報告書.

| 事例名  | No.3 カサノリ類の人工着生基盤実験                  |
|------|--------------------------------------|
| 目的   | 那覇空港の直接改変区域に分布するカサノリ類に対する環境保全措置案として、 |
|      | 生育基盤の確保するための検討を実施                    |
| 実施箇所 | 瀬長島                                  |
| 実施時期 | 平成 29 年~平成 31 年                      |
|      |                                      |

# 技術概要【背景】

・カサノリ類の生育基盤を確保するため、人工物を含めた効率のよい着生基盤の 把握及び着生基盤の設置方式について検討実験が実施された。

# 【結果等】

- ・着生基盤の素材は、サンゴ礫、サンゴ着床具、PP(ポリプロピレン)ロープが適していることが分かった。
- ・設置方式としては、網状にした PP ロープに着生基盤を固定し、網の一方を海底 に固定、もう一方にはブイをつけて満潮時は網が立ち上がる「立ち上げ式」が 適していることが分かった。
- ・設置場所はカサノリ類の高被度域、設置時期は9月頃、設置期間は1年が適していることが分かった。

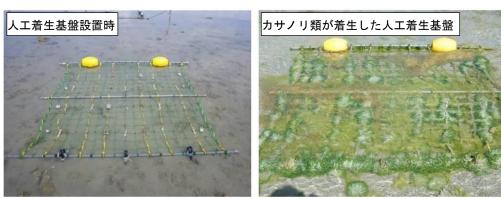



図 実験状況の例(立ち上げ式)

# 表 カサノリの人工着生基盤の最適な設置方法

| 項目   | 内容                |
|------|-------------------|
| 設置方法 | 立ち上げ式             |
| 設置場所 | カサノリ類の高被度域        |
| 素材   | サンゴ礫、サンゴ着床具、PPロープ |
| 設置時期 | 9月頃               |
| 設置期間 | 1年                |

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[71] 内閣府沖縄総合事務局,国土交通省大阪航空局: "那覇空港プロジェクト―第 18 回那覇空港滑走路増設環境監視委員会(参考資料 1)", 那覇空港プロジェクト IIP,令和 5 年(2023 年),

https://www.dc.ogb.go.jp/kyoku/information/nahakuukou/kankyoukanshiiinkai18.html(令和7年3月28日に利用).

| 事例名  | No.4 カサノリ・ホソエガサの水槽内環境条件管理実験                                                                                                                                         |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 目的   | カサノリ類の生育条件や生態に関する知見取得                                                                                                                                               |  |  |  |  |  |  |
| 実施箇所 | 陸上水槽実験                                                                                                                                                              |  |  |  |  |  |  |
| 実施時期 | 平成 15 年~平成 17 年                                                                                                                                                     |  |  |  |  |  |  |
| 技術概要 | 【背景】                                                                                                                                                                |  |  |  |  |  |  |
|      | ・カサノリやホソエガサの生育条件や生態に関する知見取得のために、陸上水槽                                                                                                                                |  |  |  |  |  |  |
|      | にて環境条件を管理した状態で以下の4項目に関する実験が行われた。                                                                                                                                    |  |  |  |  |  |  |
|      | 【結果等】                                                                                                                                                               |  |  |  |  |  |  |
|      | ・着生礫保存実験:カサノリとホソエガサの着生礫は生育速度に差はあるもの                                                                                                                                 |  |  |  |  |  |  |
|      | の、水温 15~30℃及び日照時間 10~14 時間の範囲内であれば死滅することなく                                                                                                                          |  |  |  |  |  |  |
|      | 1年以上保存できることが分かった。                                                                                                                                                   |  |  |  |  |  |  |
|      | ・発芽影響実験:ワイヤーブラシ等を用いた摩耗実験や砂への埋没実験の結果、                                                                                                                                |  |  |  |  |  |  |
|      | カサノリ及びホソエガサの着生礫は問題なく発芽した。両種は摩耗や埋没に対                                                                                                                                 |  |  |  |  |  |  |
|      | する耐性が高いことが明らかになった。                                                                                                                                                  |  |  |  |  |  |  |
|      | ・配偶子放出実験:ホソエガサは母藻投入から8日後に配偶子嚢が、18日後には                                                                                                                               |  |  |  |  |  |  |
|      | 発芽体が観察された。一方、カサノリの配偶子放出は認められなかった。                                                                                                                                   |  |  |  |  |  |  |
|      | ・種付け実験:ホソエガサの人工種苗生産は可能であり、基質としてはサンゴ礫                                                                                                                                |  |  |  |  |  |  |
|      | や自然石、コンクリート板等が適していると考えられた。                                                                                                                                          |  |  |  |  |  |  |
|      | インパクト処理(平成17年1月24日)                                                                                                                                                 |  |  |  |  |  |  |
|      | 本権内部育管理<br>実施信果<br>平成16年4月16日       適正環境条件犯履<br>試験<br>サスエグラ (た)と<br>カサノリ (右)     (インパクト)       カサノリ (右)     タワシによる磨耗          所やすりによる磨耗    M(ヤナリによる磨耗)  M(ヤナリによる磨耗) |  |  |  |  |  |  |
|      | いずれの実験区においても発芽がみられた。                                                                                                                                                |  |  |  |  |  |  |

図 水槽内環境条件管理実験状況の例

発芽(平成17年1月31日)

出典)「技術概要」における背景や結果等は以下の資料を元に加工して作成。

[70] 那覇港管理組合:平成17年度那覇港海域環境保全計画調査業務委託報告書.

[72] 那覇港管理組合:平成15年度那覇港海域環境保全計画調査業務委託報告書.

# 2. 生物の生態的特性に関する知見

海藻草類及びサンゴ類の生態的特性に関する知見を収集し整理した。なお、海藻草類のうち海藻類については、全国的な知見は確認されたものの、沖縄県内や浦添ふ頭地区に関連した知見が乏しいことから、ここでは海草類に関する知見のみを対象とした。

海草類の生態的特性に関する知見を表 2-1に、サンゴ類の生態的特性に関する知見を表 2-2に示す。

# 表 2-1 海草類の生態的特性に関する知見

| 分類                 | 項目                    |                       |             | 生態的特性の知見等                                          | 出典       |
|--------------------|-----------------------|-----------------------|-------------|----------------------------------------------------|----------|
|                    | 水温                    | トチカガミ科<br>(リュウキュウスガモ) | 2月水温 下限~上限  | 19~20°C                                            | [73]     |
|                    |                       |                       | 8月水温 下限~上限  | 28~29°C                                            | [73]     |
|                    |                       |                       | 生長と光合成の最適温度 | 30~35°C                                            | [75]     |
| 水質<br>(地形、物理条件を含む) | 塩分 トチカガミ科 (リュウキュウスガモ) |                       |             | 25∼35psu                                           | [76]     |
|                    | COD                   |                       |             | 2mg/L以下                                            | [74]     |
|                    | ss                    |                       |             | 概ね2mg/L以下                                          | [74]     |
|                    | 水中光量                  |                       |             | 3~6E/m²/日                                          | [74]     |
|                    | 底質中央粒径(d50)           |                       |             | 0.23~1.15mm                                        |          |
| 底質                 | 底質貫入深度                |                       |             | 平均15cm以上<br>(鉄筋棒 $\phi$ 8mmを用いて20回の貫入試験を実施した際の平均値) | [11][74] |
|                    | 外敵(食害)                |                       | 大型海生動物      | アオウミガメ                                             | [29]     |
| その他 海生生物           |                       |                       | 大型底生動物      | カニ(切断された観察例)                                       | [73]     |
|                    | 競合                    |                       | 海藻類         | アオサ                                                | [73]     |

※その他、これら調査項目に影響を与える物理条件(波浪・潮流等)に関わる知見として、シールズ数が0.09~0.12(底質粒径をd=1.0mmとしたとき)[73]、底面せん断応力が15~20dyn/cm²(概ね40dyn/cm²以上では海草の消失や地下茎が露出)[74]が知られる。

- [11] 照屋雅彦, 酒井洋一, 具志良太, 與儀成也, 坂井隆行, 池田宗平, 加地智彦, 細谷誠一: 熱帯性海草類の生育場創出による藻場造成実証実験, 土木学会論文集B3(海洋開発), Vol.67, No.2, pp.I.298 - I.303, 2011.
- [29] 環境省自然環境局: "第47回自然公園等小委員会 諮問案件 崎山湾・網取湾自然環境保全地域における保全計画の変更及び生態系維持回復事業計画の策定について (資料6-4)", 環境省HP, 令和4年(2022年), https://www.env.go,jp/council/12nature/\_47\_1.html (令和7年3月28日に利用).
- [73] 海の自然再生ワーキンググループ, "海藻草類の生態資料", 海の自然再生ハンドブックーその計画・技術・実践ー第3巻 藻場編, 東京, 株式会社ぎょうせい, pp.81-95, 平成15年(2003年).
- [74] 川上泰司, 小早川弘, 溝口忠弘, 三島京子, 小畠大典: 熱帯性藻場生育条件の把握の試み, 海洋開発論文集, Vol.20, pp.431 436, 2004.
- [75] Ole Pedersen, Timothy D. Colmer, Jens Borum, Andrea Zavala-Perez, Gary A. Kendrick: Heat stress of two tropical seagrass species during low tides impact on underwater net photosynthesis, dark respiration and diel *in situ* internal aeration, New Phytologist, Volume210, Issue 4, 2016.
- [76] Jie Shen, Zhongjie Wu, Lei Yin, Shiquan Chen, Zefu Cai, Xiaoxiao Geng, Daoru Wang: Physiological basis and differentially expressed genes in the salt tolerance mechanism of *Thalassia hemprichii*, Frontiers in Plant Science, vol.13 975251, 2022.

# 表 2-2 サンゴ類の生態的特性に関する知見

| 分類             | 項目                                      |                           |        | 生態的特性の知見等                                                                                                                                                                                                                                                                                | 出典                           |  |
|----------------|-----------------------------------------|---------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
|                |                                         | 造礁サンゴの成育可能範囲<br>(最適範囲)    |        | 16~36°C<br>(25~28°C)                                                                                                                                                                                                                                                                     | [77]                         |  |
|                | 水温                                      | サンゴ礁が形成される条件<br>(地理的分布範囲) |        | 最低18℃以上<br>(北緯33°48′~南緯31°40′)                                                                                                                                                                                                                                                           | [77]                         |  |
|                |                                         | 白化現象                      |        | 白化現象が生じる基準 : 週積算高水温 (Degree Heating Week:DHW) が4℃-week以上<br>白化現象による大量死が生じる基準 : DHW 8℃-week以上                                                                                                                                                                                             | [78]                         |  |
|                | 15.0                                    | 造礁サンゴの成育可能範囲<br>(最適範囲)    |        | 27~40psu<br>(34~37psu)                                                                                                                                                                                                                                                                   | [77]                         |  |
|                | 塩分                                      | サンゴ礁が形成される条件(地理的分布範囲)     |        | 34~37psu                                                                                                                                                                                                                                                                                 |                              |  |
|                |                                         | SPSS                      |        | 懸濁物質含量(content of Suspended Particles in Sea Sediment:SPSS)のランクが5a以下が望ましい。                                                                                                                                                                                                               | [79]                         |  |
|                | 濁り                                      | サンゴ被度50%となるために            | 濁度     | 0.11度以下                                                                                                                                                                                                                                                                                  | [80]                         |  |
|                |                                         | 必要な各水質項目値(暫定)             | 水平透明度  | 14.0m以上                                                                                                                                                                                                                                                                                  | [80]                         |  |
|                |                                         |                           | 全窒素    | 0.08mg/L以下                                                                                                                                                                                                                                                                               |                              |  |
| 水質<br>(地形、物理条件 | 栄養塩                                     | サンゴ被度50%となるために            | 全リン    | 0.01mg/L以下                                                                                                                                                                                                                                                                               | [77]                         |  |
| を含む)           | <b>木</b> 受塩                             | 必要な各水質項目値(暫定)             | 硝酸+亜硝酸 | 0.01mg/L以下                                                                                                                                                                                                                                                                               | [77]                         |  |
|                |                                         |                           | リン酸    | 0.006mg/L以下                                                                                                                                                                                                                                                                              |                              |  |
|                | 水深                                      |                           |        | 波あたりやサンゴの種によって異なる。<br>【那覇港の防波堤港外側の事例】<br>ミドリイシ属:浅い水深(D.L1~-3m)で被度が高い。<br>ハマサンゴ属:D.L9m以深で被度が高い。<br>ハナヤサイサンゴ属:水深の違いによる被度の違いは少ない。                                                                                                                                                           | [44][81]                     |  |
|                | 対面方位 (構造物が面する方角)                        |                           |        | 【那覇港の防波堤の事例】<br>直立壁面(港外側・港内側):南に面した地点でサンゴの被度が高く、北に面した地点で低い。<br>消波ブロック等の傾斜堤の法面(港外側):明確な違いはみられない。                                                                                                                                                                                          | [44][77]                     |  |
|                | 波、流れ                                    |                           |        | 波や流れによる効果: 栄養素を運搬し、餌となる粒子の捕獲を増加させ、老廃物を取り除き、光合成と呼吸を促進する。白<br>化後の生存率や白化からの回復にも影響する。<br>【那覇港の場合】<br>設計沖波(50年確率波)を波浪変形して求めた堤体前面の有義波高(H1/3)が7~11mの範囲でサンゴ被度が高くなる。<br>通水型ケーソンやケーソン目地部付近の直立部ではサンゴ総被度が高く、特にミドリイシ属の着生が顕著である。<br>(巻末資料p.39参照)。また、通水部付近では散房花状や樹枝状といった立体的な群体形のサンゴが多く着生する(巻末資料p.40参照)。 | [35][47][48]<br>[82][83][84] |  |
|                | 基質面の傾度                                  |                           |        | 【那覇港の防波堤港外側の事例】<br>消波ブロックの表面の傾度は、90°(垂直面)に比べて0°(上向き)及び45°(斜め上向き)でサンゴの成育が良好である。                                                                                                                                                                                                           | [44][77]                     |  |
| 底質             | 基質面の表面形状<br>がレーチング等設置                   |                           |        | ケーソンやブロック等表面に、凹凸加工を施すことや、FRP製のグレーチング等を設置することでサンゴ加入や成育を促進する効果がある。<br>【那覇港の防波堤の事例】<br>巻末資料p.34、36、37参照。                                                                                                                                                                                    | [35][44][45]<br>[46][85]     |  |
|                | 以 · · · / · · · · · · · · · · · · · · · | 魚類                        |        | ブダイ類、ハギ類、チョウチョウウオ類                                                                                                                                                                                                                                                                       | [77]                         |  |
| その他            | 外敵(食害·侵食)<br>大型底生動物                     |                           |        | 食害:オニヒトデ、シロレイシガイダマシ、ウニ類(ガンガゼ、ナガウニ)<br>侵食:二枚貝(シギノハシ類)、多毛類(ゴカイ)、海綿(クリオナ)                                                                                                                                                                                                                   | [77]                         |  |
| 海生生物           | 海藻類                                     |                           |        | 着生基質をめぐり競合する。                                                                                                                                                                                                                                                                            |                              |  |
|                | 競合サンゴ類                                  |                           | サンゴ類   | 隣接するサンゴ同士が着生基質や成長するための空間をめぐり競合する。                                                                                                                                                                                                                                                        | [77]                         |  |

- [35] 内閣府沖縄総合事務局開発建設部: "環境共生に関する技術を取りまとめた「技術カルテ」", 内閣府沖縄総合事務局HP, 平成29年(2017年), https://www.ogb.go.jp/kaiken/minato/005799 (令和7年3月28日に利用). を加工して作成
- [44] Toko Tanaya, Shunpei Iwamura, Wataru Okada, Tomohiro Kuwae: Artificial structures can facilitate rapid coral recovery under climate change, Scientific reports, 15(1):9116, doi: 10.1038/s41598-025-93531-2, 2025.
- [45] 棚谷 灯子,桑江 朝比呂:人工構造物を用いた新たな生息場の創造によるサンゴ礁生態系の再生, 港湾空港技術研究所報告, Vol.64, No.2, 2025.
- [46] 山木克則, 新保裕美, 田中昌宏:コーラルネットを用いた那覇港内におけるサンゴ群集の創生, 土木学会論文集B3(海洋開発), Vol.73, No.2, pp.I\_875 I\_880, 2017. を加工して作成
- [47] 棚谷灯子,金城信之,岩村俊平,青山宗平,長谷川巌,鈴木高二朗,桑江朝比呂:防波堤におけるサンゴの着生に対するケーソン目地部の効果,土木学会論文集B2(海岸工学), Vol.75, No.2, pp.I\_1147 I\_1152,
- 2019. [48] 吉見昌宏, 与那覇健次, 片岡真二, 山本秀一, 高橋由浩, 田村圭一: サンゴの人工構造物への着生状況-3, 海岸工学論文集, Vol.45, pp.1111 - 1115, 1998.
- [77] 海の自然再生ワーキンググループ: 海の自然再生ハンドブックーその計画・技術・実践 第4巻 サンゴ礁編, 東京, 株式会社ぎょうせい, 103p, 平成15年(2003年)
- [78] Gang Liu, Alan E. Strong, William J. Skirving: Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. Eos Transactions American Geophysical Union, Vol84, No.15, pp.137-141, 2003
- [79] 大見謝辰男: SPSS簡易測定法とその解説, 沖縄県衛生環境研究所報, No.37, pp.99 104, 2003.
- [80] 金城考一: 陸域からの環境負荷対策について、日本サンゴ礁学会誌、Vol.19、No.1, pp.87 94, 2017.
- [81] 山本秀一, 高橋由浩, 住田公資, 林輝幸, 杉浦則夫, 前川孝昭:人工構造物におけるサンゴ群集成長過程の解析, 海洋工学論文集, Vol.49, pp.1186 1190, 2002.
- [82] Takashi Nakamura, Hideo Yamasaki, Rovert van Woesik: Water flow facilitates recovery from bleaching in the coral Stylophora pistillata, Marine Ecology Progress, Series, Volume.256, pp.287-291, 2003.
- [83] 岩上淳一, 宮井真一郎, 栗田一昭, 尾崎幸男, 山本秀一, 高橋由浩: サンゴの人工構造物への着生状況-2, 海岸工学論文集, Vol.42, pp.1206 1210, 1995.
- [84] Makoto Omori: Coral restoration research and technical developments: what we have learned so far. Marine Biology Research, Volume15, Issue7, 2019.
- [85] 三宅光一, 甲斐広文, 宮里高広, 國吉啓太, 山本秀一, 田村圭一, 岩村俊平:人工構造物の表面加工によるサンゴ群集着生促進効果の評価, 海洋工学論文集, Vol.53, pp.1106 1110, 2006.